1186.删除一次得到子数组最大和

目标

给你一个整数数组,返回它的某个 非空 子数组(连续元素)在执行一次可选的删除操作后,所能得到的最大元素总和。换句话说,你可以从原数组中选出一个子数组,并可以决定要不要从中删除一个元素(只能删一次哦),(删除后)子数组中至少应当有一个元素,然后该子数组(剩下)的元素总和是所有子数组之中最大的。

注意,删除一个元素后,子数组 不能为空。

示例 1:

输入:arr = [1,-2,0,3]
输出:4
解释:我们可以选出 [1, -2, 0, 3],然后删掉 -2,这样得到 [1, 0, 3],和最大。

示例 2:

输入:arr = [1,-2,-2,3]
输出:3
解释:我们直接选出 [3],这就是最大和。

示例 3:

输入:arr = [-1,-1,-1,-1]
输出:-1
解释:最后得到的子数组不能为空,所以我们不能选择 [-1] 并从中删去 -1 来得到 0。
     我们应该直接选择 [-1],或者选择 [-1, -1] 再从中删去一个 -1。

说明:

  • 1 <= arr.length <= 10^5
  • -10^4 <= arr[i] <= 10^4

思路

有一个数组求其子数组的最大和,允许删除子数组的一个元素,但子数组至少要有一个元素。

暴力解法是,先找出负值元素的下标,依次删除,针对删除后的数组求其子数组的最大和。使用前缀和求出最大子数组的时间复杂度是O(n^2),再删除负值(将负值置零,和增大),最坏情况下为O(n^3),会超时。暴力解法要注意,至少保留1个元素。

// todo

代码

性能

2850.将石头分散到网格图的最少移动次数

目标

给你一个大小为 3 * 3 ,下标从 0 开始的二维整数矩阵 grid ,分别表示每一个格子里石头的数目。网格图中总共恰好有 9 个石头,一个格子里可能会有 多个 石头。

每一次操作中,你可以将一个石头从它当前所在格子移动到一个至少有一条公共边的相邻格子。

请你返回每个格子恰好有一个石头的 最少移动次数 。

示例 1:

输入:grid = [[1,1,0],[1,1,1],[1,2,1]]
输出:3
解释:让每个格子都有一个石头的一个操作序列为:
1 - 将一个石头从格子 (2,1) 移动到 (2,2) 。
2 - 将一个石头从格子 (2,2) 移动到 (1,2) 。
3 - 将一个石头从格子 (1,2) 移动到 (0,2) 。
总共需要 3 次操作让每个格子都有一个石头。
让每个格子都有一个石头的最少操作次数为 3 。

示例 2:

输入:grid = [[1,3,0],[1,0,0],[1,0,3]]
输出:4
解释:让每个格子都有一个石头的一个操作序列为:
1 - 将一个石头从格子 (0,1) 移动到 (0,2) 。
2 - 将一个石头从格子 (0,1) 移动到 (1,1) 。
3 - 将一个石头从格子 (2,2) 移动到 (1,2) 。
4 - 将一个石头从格子 (2,2) 移动到 (2,1) 。
总共需要 4 次操作让每个格子都有一个石头。
让每个格子都有一个石头的最少操作次数为 4 。

说明:

  • grid.length == grid[i].length == 3
  • 0 <= grid[i][j] <= 9
  • grid 中元素之和为 9 。

思路

有一个3 * 3 的二维矩阵,有9个石头散落在其中,每次可以将石头移到相邻的格子里,问每个格子一块石头最少需要移动几次。

有多余石头的格子到没有石头格子移动的次数为其曼哈顿距离要想使移动次数最小,我们只需要从没有石头的格子向四个方向查找有多余石头的格子即可

并非是沿四个方向搜索,而是BFS找最短路径。 遍历四个方向,那么只能沿着该方向查找,而BFS则是由内层向外层查找,体会二者的不同。但这题使用BFS也无法保证得到的是最小移动次数,考虑下面的情况:

从0开始取最近的并不能保证得到最优解,比如下面这种情况:

3,2,0      3,1,1      2,1,1      2,1,1      2,1,1      1,1,1
0,1,0  ->  0,1,0  ->  1,1,0  ->  1,1,1  ->  1,1,1  ->  1,1,1
0,3,0      0,3,0      0,3,0      0,2,0      1,1,0      1,1,1
       1          1          2           1          4
左下角的应该从第一个元素取:

3,2,0      3,1,1      2,1,1      2,1,1      1,1,1      1,1,1
0,1,0  ->  0,1,0  ->  1,1,0  ->  1,1,1  ->  1,1,1  ->  1,1,1
0,3,0      0,3,0      0,3,0      0,2,0      1,2,0      1,1,1
       1          1          2           2          1

尽管这题使用BFS求解不了,但还是有一些收获的。BFS很容易错写成每次从队列取一个元素,然后判断该元素是否满足条件,不满足就将其邻接节点加入队列。当需要进行层次计数的时候就不对了,应该在每次循环的第一步记录队列中元素个数 k,本次处理中就循环判断这k个元素,在循环过程中判断是否满足条件,不满足的将其邻接节点加入队列,因为我们已经在前面计数了,因此这些邻接节点将在下一次循环中处理。

如果取最近的多余石头这种贪心策略不行的话,那么问题就不在于最短路径了。而应从整体上考虑从哪里移动到哪里才是最优的,可以尝试记忆化搜索解空间。我们可以很容易枚举出哪些格子没有石头,哪些格子石头多于1个,只需枚举它们的组合并取其曼哈顿距离之和最小值即可。

这里的核心问题是如何遍历这两个列表的组合,我想到的方法就是使用回溯算法,每向下递归一层就标记为已访问,而返回时再取消其标记。并且如果不保存重复子问题的话,执行会超时。这里的重复子问题是两组数据未访问元素相同,而已访问数据的组合不同。例如: [a,b,c,d,e,f,g] [h,i,j,k,l,m,n] 前面两个元素组合 (a, h) (b, i)(a, i) (b, h) 剩余的元素的组合情况完全相同。

最终使用状态压缩与回溯解出来了。如果不记录重复的子问题的话,dfs方法要调用3705927296次,而使用记忆化搜索只需调用12868次。

官网题解也是类似的思路,只不过遍历组合的方式不同,它是固定一个列表不变,另一个进行全排列。//todo 有空再研究一下官网题解吧

代码

/**
 * @date 2024-07-20 15:55
 */
public class MinimumMoves2850 {

    public int minimumMoves_v2(int[][] grid) {
        List<int[]> zeros = new ArrayList<>();
        List<int[]> more = new ArrayList<>();
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++) {
                if (grid[i][j] == 0) {
                    zeros.add(new int[]{i, j});
                } else if (grid[i][j] > 1) {
                    for (int k = 0; k < grid[i][j] - 1; k++) {
                        more.add(new int[]{i, j});
                    }
                }
            }
        }
        int k = zeros.size();
        int res = Integer.MAX_VALUE;
        int[][] mem = new int[255][255];

        for (int i = 0; i < k; i++) {
            // 状态压缩
            int zerosVisited = 0x000000ff;
            zerosVisited ^= 1 << i;
            int[] zero = zeros.get(i);
            for (int j = 0; j < k; j++) {
                int moreVisited = 0x000000ff;
                moreVisited ^= 1 << j;
                int[] m = more.get(j);
                int distance = Math.abs(zero[0] - m[0]) + Math.abs(zero[1] - m[1]);
                res = Math.min(res, distance + dfs_v2(zeros, more, zerosVisited, moreVisited, 1, mem));
            }
        }
        return res;
    }

    public int dfs_v2(List<int[]> zeros, List<int[]> more, int zerosVisited, int moreVisited, int level, int[][] mem) {
        if (level == zeros.size()) {
            return 0;
        }
        int k = zeros.size();
        int res = Integer.MAX_VALUE;
        for (int i = 0; i < k; i++) {
            if (((zerosVisited >> i) & 1) == 0) {
                continue;
            }
            zerosVisited ^= 1 << i;
            int[] zero = zeros.get(i);
            for (int j = 0; j < k; j++) {
                if (((moreVisited >> j) & 1) == 0) {
                    continue;
                }
                moreVisited ^= 1 << j;
                int[] m = more.get(j);
                int distance = Math.abs(zero[0] - m[0]) + Math.abs(zero[1] - m[1]);
                if (mem[zerosVisited][moreVisited] == 0) {
                    // 重复的子问题是两边剩余的元素均相同
                    mem[zerosVisited][moreVisited] = dfs_v2(zeros, more, zerosVisited, moreVisited, level + 1, mem);
                }
                res = Math.min(res, distance + mem[zerosVisited][moreVisited]);
                // 回溯
                moreVisited ^= 1 << j;
            }
            zerosVisited ^= 1 << i;
        }
        return res;
    }

}

性能

2959.关闭分部的可行集合数目

目标

一个公司在全国有 n 个分部,它们之间有的有道路连接。一开始,所有分部通过这些道路两两之间互相可以到达。

公司意识到在分部之间旅行花费了太多时间,所以它们决定关闭一些分部(也可能不关闭任何分部),同时保证剩下的分部之间两两互相可以到达且最远距离不超过 maxDistance 。

两个分部之间的 距离 是通过道路长度之和的 最小值 。

给你整数 n ,maxDistance 和下标从 0 开始的二维整数数组 roads ,其中 roads[i] = [ui, vi, wi] 表示一条从 ui 到 vi 长度为 wi的 无向 道路。

请你返回关闭分部的可行方案数目,满足每个方案里剩余分部之间的最远距离不超过 maxDistance。

注意,关闭一个分部后,与之相连的所有道路不可通行。

注意,两个分部之间可能会有多条道路。

示例 1:

输入:n = 3, maxDistance = 5, roads = [[0,1,2],[1,2,10],[0,2,10]]
输出:5
解释:可行的关闭分部方案有:
- 关闭分部集合 [2] ,剩余分部为 [0,1] ,它们之间的距离为 2 。
- 关闭分部集合 [0,1] ,剩余分部为 [2] 。
- 关闭分部集合 [1,2] ,剩余分部为 [0] 。
- 关闭分部集合 [0,2] ,剩余分部为 [1] 。
- 关闭分部集合 [0,1,2] ,关闭后没有剩余分部。
总共有 5 种可行的关闭方案。

示例 2:

输入:n = 3, maxDistance = 5, roads = [[0,1,20],[0,1,10],[1,2,2],[0,2,2]]
输出:7
解释:可行的关闭分部方案有:
- 关闭分部集合 [] ,剩余分部为 [0,1,2] ,它们之间的最远距离为 4 。
- 关闭分部集合 [0] ,剩余分部为 [1,2] ,它们之间的距离为 2 。
- 关闭分部集合 [1] ,剩余分部为 [0,2] ,它们之间的距离为 2 。
- 关闭分部集合 [0,1] ,剩余分部为 [2] 。
- 关闭分部集合 [1,2] ,剩余分部为 [0] 。
- 关闭分部集合 [0,2] ,剩余分部为 [1] 。
- 关闭分部集合 [0,1,2] ,关闭后没有剩余分部。
总共有 7 种可行的关闭方案。

示例 3:

输入:n = 1, maxDistance = 10, roads = []
输出:2
解释:可行的关闭分部方案有:
- 关闭分部集合 [] ,剩余分部为 [0] 。
- 关闭分部集合 [0] ,关闭后没有剩余分部。
总共有 2 种可行的关闭方案。

说明:

  • 1 <= n <= 10
  • 1 <= maxDistance <= 105
  • 0 <= roads.length <= 1000
  • roads[i].length == 3
  • 0 <= ui, vi <= n - 1
  • ui != vi
  • 1 <= wi <= 1000
  • 一开始所有分部之间通过道路互相可以到达。

思路

没时间做了// todo

代码

性能

721.账户合并

目标

给定一个列表 accounts,每个元素 accounts[i] 是一个字符串列表,其中第一个元素 accounts[i][0] 是 名称 (name),其余元素是 emails 表示该账户的邮箱地址。

现在,我们想合并这些账户。如果两个账户都有一些共同的邮箱地址,则两个账户必定属于同一个人。请注意,即使两个账户具有相同的名称,它们也可能属于不同的人,因为人们可能具有相同的名称。一个人最初可以拥有任意数量的账户,但其所有账户都具有相同的名称。

合并账户后,按以下格式返回账户:每个账户的第一个元素是名称,其余元素是 按字符 ASCII 顺序排列 的邮箱地址。账户本身可以以 任意顺序 返回。

示例 1:

输入:accounts = [["John", "johnsmith@mail.com", "john00@mail.com"], ["John", "johnnybravo@mail.com"], ["John", "johnsmith@mail.com", "john_newyork@mail.com"], ["Mary", "mary@mail.com"]]
输出:[["John", 'john00@mail.com', 'john_newyork@mail.com', 'johnsmith@mail.com'],  ["John", "johnnybravo@mail.com"], ["Mary", "mary@mail.com"]]
解释:
第一个和第三个 John 是同一个人,因为他们有共同的邮箱地址 "johnsmith@mail.com"。 
第二个 John 和 Mary 是不同的人,因为他们的邮箱地址没有被其他帐户使用。
可以以任何顺序返回这些列表,例如答案 [['Mary','mary@mail.com'],['John','johnnybravo@mail.com'],
['John','john00@mail.com','john_newyork@mail.com','johnsmith@mail.com']] 也是正确的。

示例 2:

输入:accounts = [["Gabe","Gabe0@m.co","Gabe3@m.co","Gabe1@m.co"],["Kevin","Kevin3@m.co","Kevin5@m.co","Kevin0@m.co"],["Ethan","Ethan5@m.co","Ethan4@m.co","Ethan0@m.co"],["Hanzo","Hanzo3@m.co","Hanzo1@m.co","Hanzo0@m.co"],["Fern","Fern5@m.co","Fern1@m.co","Fern0@m.co"]]
输出:[["Ethan","Ethan0@m.co","Ethan4@m.co","Ethan5@m.co"],["Gabe","Gabe0@m.co","Gabe1@m.co","Gabe3@m.co"],["Hanzo","Hanzo0@m.co","Hanzo1@m.co","Hanzo3@m.co"],["Kevin","Kevin0@m.co","Kevin3@m.co","Kevin5@m.co"],["Fern","Fern0@m.co","Fern1@m.co","Fern5@m.co"]]

说明:

  • 1 <= accounts.length <= 1000
  • 2 <= accounts[i].length <= 10
  • 1 <= accounts[i][j].length <= 30
  • accounts[i][0] 由英文字母组成
  • accounts[i][j] (for j > 0) 是有效的邮箱地址

思路

现有一个账号名称与邮箱列表组成的二维数组,如果两个账号对应的邮箱有重合,那么认为这两个账号属于同一个人,名称一定相同。但是名称相同不代表账户相同。现在需要将同一个人的账号合并,返回格式为,[名称,邮箱1,邮箱2,...],其中邮箱按 ASCII 排序。注意,同一个记录的邮箱列表中也可能存在相同邮箱,比如 ["Kevin","Kevin4@m.co","Kevin2@m.co","Kevin2@m.co"]

直接的想法是比较名称相同的账户邮箱是否有重合,如果有则合并。先将数据整理一下,换为 Map<name, List<List<Integer>>>,然后判断集合是否有共同元素,有则合并,没有则保留。那么使用什么方式处理集合呢?如果两两比较,时间复杂度为 O(n^2),好在一个账户邮箱最多 9 个,账户数量最多1000个,数据量不大。

如果两个集合有公共邮箱,那么可以使用 a.removeAll(b) 这个函数,它的返回值是布尔类型,如果a集合调用函数之后发生变化,即移除了a与b的公共元素,则返回 true,否则 false。因此当返回 true 时,直接与b合并,否则放回队列。需要注意的问题是,集合列表 {a,b} {c,d} {d,e} {e,f} {f,b} 将 第一个集合 {a,b} 与后面的集合依次两两比较时,直到最后一个才合并为{a,b,f},错过了与前面集合的合并,因此我们需要重新与前面的集合比较。

由于需要反复地比较这些集合,又要将属于同一账户的邮箱集合从集合列表中删除,涉及到集合的动态添加与删除。如果使用 ArrayList,尽管可以使用迭代器来动态添加与删除元素,但是从中间删除效率不高,需要移动数组元素。因此我们选择队列来保存这些集合,由于我们的操作主要在首尾两端,可以使用 ArrayDequeArrayDeque 双端操作效率比 LinkedList 更高,尽管它们都能在 O(1) 时间内完成操作,但是 LinkedList 需要额外的指针操作以及潜在的缓存不命中(不是连续分配的)问题,而 ArrayDeque 基于循环数组实现,只需调整头尾指针即可。

官网题解使用的是并查集,其实刚开始我也想到了使用并查集,但之前都是在图问题中用的,如果两个节点有边连接直接合并,但本题如何判断能否合并或者说是否连通呢?通常我们使用数组列表建图,但这里节点数据的类型不同,考虑使用map,key为邮箱,value为账户下标列表。遍历原二维数组,记录已合并的下标,如果邮箱对应有其它账户下标则进入dfs。

// todo 并查集

代码


/**
 * @date 2024-07-15 8:40
 */
public class AccountsMerge721 {
    public List<List<String>> accountsMerge_v1(List<List<String>> accounts) {
        int n = accounts.size();
        Map<String, List<Integer>> map = new HashMap<>();
        for (int i = 0; i < n; i++) {
            for (int j = 1; j < accounts.get(i).size(); j++) {
                map.computeIfAbsent(accounts.get(i).get(j), x -> new ArrayList<>()).add(i);
            }
        }

        boolean[] visited = new boolean[n];
        List<List<String>> res = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            if (visited[i]) {
                continue;
            }
            visited[i] = true;
            List<String> account = accounts.get(i);
            int size = account.size();
            Set<String> mailList = new HashSet<>(account.subList(1, size));
            for (int j = 1; j < size; j++) {
                String mail = accounts.get(i).get(j);
                for (Integer index : map.get(mail)) {
                    if (visited[index]) {
                        continue;
                    }
                    dfs(index, accounts, map, mailList, visited);
                }
            }
            ArrayList<String> item = new ArrayList<>(mailList);
            Collections.sort(item);
            item.add(0, accounts.get(i).get(0));
            res.add(item);
        }
        return res;
    }

    public void dfs(int index, List<List<String>> accounts, Map<String, List<Integer>> map, Set<String> mailList, boolean[] visited) {
        visited[index] = true;
        List<String> account = accounts.get(index);
        int size = account.size();
        mailList.addAll(account.subList(1, size));
        for (int j = 1; j < size; j++) {
            String mail = accounts.get(index).get(j);
            for (Integer next : map.get(mail)) {
                if (visited[next]) {
                    continue;
                }
                dfs(next, accounts, map, mailList, visited);
            }
        }
    }

    public List<List<String>> accountsMerge(List<List<String>> accounts) {
        Map<String, Queue<Set<String>>> map = new HashMap<>();
        for (List<String> account : accounts) {
            String name = account.get(0);
            map.putIfAbsent(name, new ArrayDeque<>());
            Queue<Set<String>> queue = map.get(name);
            Set<String> mails = new TreeSet<>();
            for (int i = 1; i < account.size(); i++) {
                mails.add(account.get(i));
            }
            queue.offer(mails);
        }
        List<List<String>> res = new ArrayList<>();
        for (Map.Entry<String, Queue<Set<String>>> entry : map.entrySet()) {
            Queue<Set<String>> queue = entry.getValue();
            List<Set<String>> merged = new ArrayList<>();
            while (!queue.isEmpty()) {
                Set<String> mails = queue.poll();
                int size = queue.size();
                int cnt = 0;
                for (int i = 0; i < size; i++) {
                    Set<String> m = queue.poll();
                    if (m.removeAll(mails)) {
                        // 存在问题,(a,b)(c,d)(d,e)(e,f)(f,b) 最后一个才合并(a,b,f),错过了与前面集合的合并
                        mails.addAll(m);
                        // 这里扩展了执行次数,与前面比较过的元素重新比较
                        size += cnt;
                        cnt = 0;
                    } else {
                        queue.add(m);
                        cnt++;
                    }
                }
                merged.add(mails);
            }

            for (Set<String> set : merged) {
                List<String> l = new ArrayList<>();
                l.add(entry.getKey());
                l.addAll(set);
                res.add(l);
            }
        }

        return res;
    }
}

性能

使用队列

使用dfs

3086.拾起K个1需要的最少行动次数

目标

给你一个下标从 0 开始的二进制数组 nums,其长度为 n ;另给你一个 正整数 k 以及一个 非负整数 maxChanges 。

Alice 在玩一个游戏,游戏的目标是让 Alice 使用 最少 数量的 行动 次数从 nums 中拾起 k 个 1 。游戏开始时,Alice 可以选择数组 [0, n - 1] 范围内的任何索引 aliceIndex 站立。如果 nums[aliceIndex] == 1 ,Alice 会拾起一个 1 ,并且 nums[aliceIndex] 变成0(这 不算 作一次行动)。之后,Alice 可以执行 任意数量 的 行动(包括零次),在每次行动中 Alice 必须 恰好 执行以下动作之一:

  • 选择任意一个下标 j != aliceIndex 且满足 nums[j] == 0 ,然后将 nums[j] 设置为 1 。这个动作最多可以执行 maxChanges 次。
  • 选择任意两个相邻的下标 x 和 y(|x - y| == 1)且满足 nums[x] == 1, nums[y] == 0 ,然后交换它们的值(将 nums[y] = 1 和 nums[x] = 0)。如果 y == aliceIndex,在这次行动后 Alice 拾起一个 1 ,并且 nums[y] 变成 0 。

返回 Alice 拾起 恰好 k 个 1 所需的 最少 行动次数。

示例 1:

输入:nums = [1,1,0,0,0,1,1,0,0,1], k = 3, maxChanges = 1
输出:3
解释:如果游戏开始时 Alice 在 aliceIndex == 1 的位置上,按照以下步骤执行每个动作,他可以利用 3 次行动拾取 3 个 1 :

游戏开始时 Alice 拾取了一个 1 ,nums[1] 变成了 0。此时 nums 变为 [1,0,0,0,0,1,1,0,0,1] 。
选择 j == 2 并执行第一种类型的动作。nums 变为 [1,0,1,0,0,1,1,0,0,1]
选择 x == 2 和 y == 1 ,并执行第二种类型的动作。nums 变为 [1,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [1,0,0,0,0,1,1,0,0,1] 。
选择 x == 0 和 y == 1 ,并执行第二种类型的动作。nums 变为 [0,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [0,0,0,0,0,1,1,0,0,1] 。
请注意,Alice 也可能执行其他的 3 次行动序列达成拾取 3 个 1 。

示例 2:

输入:nums = [0,0,0,0], k = 2, maxChanges = 3
输出:4
解释:如果游戏开始时 Alice 在 aliceIndex == 0 的位置上,按照以下步骤执行每个动作,他可以利用 4 次行动拾取 2 个 1 :

选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于 y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。
再次选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
再次选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。

说明:

  • 2 <= n <= 10^5
  • 0 <= nums[i] <= 1
  • 1 <= k <= 10^5
  • 0 <= maxChanges <= 10^5
  • maxChanges + sum(nums) >= k

思路

有一个二进制(元素不是0就是1)数组nums,选择一个固定的位置aliceIndex,如果该位置元素值为1,则可以拾起并将元素置0。接下来可以采取行动:

  1. 任选一个不等于aliceIndex且值为0的元素置1
  2. 将任意相邻且元素值不等的元素交换,如果其中一个位置是aliceIndex,且交换后的值为1,则可以拾起这个1并将元素置0

问恰好拾起k个1所需最小行动次数。

很明显行动1要选与aliceIndex相邻的,这样才可以用行动2将1拾起。

我们首先面对的问题是aliceIndex怎么选,要拾取1就需要将1都通过行动2移动到aliceIndex周围,如果拾取一个1的行动次数大于2的话就需要考虑使用行动1直接在aliceIndex周围设置1再拾取。

// todo

代码

性能

494.目标和

目标

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

说明:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

思路

有一个数组,可以在数组元素前加上正负号来组成表达式,问表达式等于target的数目。

如果当前元素为正则累加,否则相减,递归直到所有元素都已列入表达式,如果累加结果等于target则返回1,否则返回0。

//todo 改为递推,或记忆化搜索

代码

/**
 * @date 2024-06-30 20:07
 */
public class FindTargetSumWays494 {
    public int findTargetSumWays(int[] nums, int target) {
        return dfs(nums, 1, nums[0], target) + dfs(nums, 1, -nums[0], target);
    }

    public int dfs(int[] nums, int i, int res, int target) {
        if (i == nums.length) {
            return res - target == 0 ? 1 : 0;
        }
        return dfs(nums, i + 1, res + nums[i], target) + dfs(nums, i + 1, res - nums[i], target);
    }

}

性能

2741.特别的排列

目标

给你一个下标从 0 开始的整数数组 nums ,它包含 n 个 互不相同 的正整数。如果 nums 的一个排列满足以下条件,我们称它是一个特别的排列:

  • 对于 0 <= i < n - 1 的下标 i ,要么 nums[i] % nums[i+1] == 0 ,要么 nums[i+1] % nums[i] == 0 。

请你返回特别排列的总数目,由于答案可能很大,请将它对 109 + 7 取余 后返回。

示例 1:

输入:nums = [2,3,6]
输出:2
解释:[3,6,2] 和 [2,6,3] 是 nums 两个特别的排列。

示例 2:

输入:nums = [1,4,3]
输出:2
解释:[3,1,4] 和 [4,1,3] 是 nums 两个特别的排列。

说明:

  • 2 <= nums.length <= 14
  • 1 <= nums[i] <= 10^9

思路

有一个互不相同的正整数数组,问使得相邻元素可以被整除(对于相邻元素a % b == 0 || b % a == 0)的排列有多少种。

排列数的计算需要使用dfs,但如果不保存重复子问题的话会超时。

难点在于是否将保存的结果计入,例如 [2,6,3],虽然dfs 2 -> 6 -> 36 -> 2 -> 3有重复的子问题3,但是后者不符合题目条件。

// todo

代码

性能

2732.找到矩阵中的好子集

目标

给你一个下标从 0 开始大小为 m x n 的二进制矩阵 grid 。

从原矩阵中选出若干行构成一个行的 非空 子集,如果子集中任何一列的和至多为子集大小的一半,那么我们称这个子集是 好子集。

更正式的,如果选出来的行子集大小(即行的数量)为 k,那么每一列的和至多为 floor(k / 2) 。

请你返回一个整数数组,它包含好子集的行下标,请你将子集中的元素 升序 返回。

如果有多个好子集,你可以返回任意一个。如果没有好子集,请你返回一个空数组。

一个矩阵 grid 的行 子集 ,是删除 grid 中某些(也可能不删除)行后,剩余行构成的元素集合。

示例 1:

输入:grid = [[0,1,1,0],[0,0,0,1],[1,1,1,1]]
输出:[0,1]
解释:我们可以选择第 0 和第 1 行构成一个好子集。
选出来的子集大小为 2 。
- 第 0 列的和为 0 + 0 = 0 ,小于等于子集大小的一半。
- 第 1 列的和为 1 + 0 = 1 ,小于等于子集大小的一半。
- 第 2 列的和为 1 + 0 = 1 ,小于等于子集大小的一半。
- 第 3 列的和为 0 + 1 = 1 ,小于等于子集大小的一半。

示例 2:

输入:grid = [[0]]
输出:[0]
解释:我们可以选择第 0 行构成一个好子集。
选出来的子集大小为 1 。
- 第 0 列的和为 0 ,小于等于子集大小的一半。

示例 3:

输入:grid = [[1,1,1],[1,1,1]]
输出:[]
解释:没有办法得到一个好子集。

说明:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m <= 10^4
  • 1 <= n <= 5
  • grid[i][j] 要么是 0 ,要么是 1 。

思路

有一个 m*n二进制矩阵,任选k行,如果每一列的和不大于 k/2,则称为矩阵的好子集,返回任意一个好子集行标的集合。

在写这篇题解的时候才注意到是二进制矩阵,即元素值不是0就是1。这道题是根据提示写的,如果存在好子集则一定存在k为1或2的好子集,然后就根据好子集的要求循环判断。

当k为1时,好子集元素值全为0.当k为2时,任选两行遍历列判断是否有和大于1。

// todo 看一下题解

代码

/**
 * @date 2024-06-25 0:28
 */
public class GoodSubsetofBinaryMatrix2732 {
    public List<Integer> goodSubsetofBinaryMatrix(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        List<Integer> list = new ArrayList<>();
        Queue<Integer> queue = new ArrayDeque<>();
        here:
        for (int i = 0; i < m; i++) {
            queue.offer(i);
            for (int j = 0; j < n; j++) {
                if (grid[i][j] != 0) {
                    continue here;
                }
            }
            list.add(i);
        }
        if (list.size() > 0) {
            return list;
        }
        while (!queue.isEmpty()) {
            int i = queue.poll();
            here:
            for (int j = i + 1; j < m; j++) {
                for (int k = 0; k < n; k++) {
                    if (grid[i][k] + grid[j][k] > 1){
                        continue here;
                    }
                }
                list.add(i);
                list.add(j);
                return list;
            }
        }
        return list;
    }
}

性能

503.下一个更大元素II – 单调栈

目标

给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。

数字 x 的 下一个更大的元素 是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1 。

示例 1:

输入: nums = [1,2,1]
输出: [2,-1,2]
解释: 第一个 1 的下一个更大的数是 2;
数字 2 找不到下一个更大的数; 
第二个 1 的下一个最大的数需要循环搜索,结果也是 2。

示例 2:

输入: nums = [1,2,3,4,3]
输出: [2,3,4,-1,4]

说明:

  • 1 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9

思路

暴力解法需要针对每一个元素向后搜索,时间复杂度为O(n^2)。这里面有一些重复的操作,例如,数组 [5,4,3,2,1,6] 找下一个更大的元素,从 5 向后搜索 与从 4 向后搜索有重复的部分 3 2 1。单调栈的核是这样处理的,先将第一个元素下标压入栈中,指针移到下一个元素,如果栈顶对应元素大于等于当前元素则将当前元素下标也压入栈中,否则弹栈,记录 res[stack.pop()] = 当前元素,直到栈顶元素大于等于当前元素。

针对这个题目,栈中保存的下标对应的元素值从栈底到栈顶是单调递减的,如果遇到第一个更大元素就弹栈了,因此称为单调栈。

这样做的好处是避免了重复的查找,它将重复搜索的部分使用栈保存了起来,这样就变成了从后向前搜索。如果栈顶元素遇到了第一个更大的元素,那么它也是前面同样小于该值的第一个更大元素,从而避免了重复查找。

这里对循环数组的处理是将原数组拼接到后面,下标进行取模运算。

代码

/**
 * @date 2024-06-24 0:18
 */
public class NextGreaterElements503 {

    public int[] nextGreaterElements_v4(int[] nums) {
        int n = nums.length;
        int[] res = new int[n];
        Arrays.fill(res, -1);
        int[] stack = new int[n];
        int top = -1;
        for (int i = 0; i < 2 * n - 1; i++) {
            int index = i % n;
            while (top > -1 && nums[stack[top]] < nums[index]) {
                res[stack[top--]] = nums[index];
            }
            if (i < n) {
                stack[++top] = index;
            }
        }
        return res;
    }
}

性能