2713.矩阵中严格递增的单元格数

目标

给你一个下标从 1 开始、大小为 m x n 的整数矩阵 mat,你可以选择任一单元格作为 起始单元格 。

从起始单元格出发,你可以移动到 同一行或同一列 中的任何其他单元格,但前提是目标单元格的值 严格大于 当前单元格的值。

你可以多次重复这一过程,从一个单元格移动到另一个单元格,直到无法再进行任何移动。

请你找出从某个单元开始访问矩阵所能访问的 单元格的最大数量 。

返回一个表示可访问单元格最大数量的整数。

示例 1:

输入:mat = [[3,1],[3,4]]
输出:2
解释:上图展示了从第 1 行、第 2 列的单元格开始,可以访问 2 个单元格。可以证明,无论从哪个单元格开始,最多只能访问 2 个单元格,因此答案是 2 。

示例 2:

输入:mat = [[1,1],[1,1]]
输出:1
解释:由于目标单元格必须严格大于当前单元格,在本示例中只能访问 1 个单元格。 

示例 3:

输入:mat = [[3,1,6],[-9,5,7]]
输出:4
解释:上图展示了从第 2 行、第 1 列的单元格开始,可以访问 4 个单元格。可以证明,无论从哪个单元格开始,最多只能访问 4 个单元格,因此答案是 4 。  

说明:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 10^5
  • 1 <= m * n <= 10^5
  • -10^5 <= mat[i][j] <= 10^5

思路

有一个二维矩阵,我们可以从任意元素出发到达同行或同列的任意严格大于该元素值的位置,问我们最多能访问到多少单元格。

最直接的想法就是建立一个有向无环图,然后求最大路径长度。但是建图的过程需要循环mn(m+n)次,针对每个元素判断其同行同列上严格大于的元素。显然会超时。

于是考虑使用记忆化搜索,结果测试用例 558/566 超时,这个二维数组只有一行,有 100000列,从 1~100000,我在本地测试的时候报栈溢出。

我想要将其转为迭代的形式,但是时间紧迫,简单起见对一行或一列的情况做了特殊处理,排序后去重,最后勉强通过了。

官网题解使用的是动态规划,有时间详细看一下。//todo

代码

/**
 * @date 2024-06-19 16:28
 */
public class MaxIncreasingCells2713 {

    public int maxIncreasingCells(int[][] mat) {
        int res = 0;
        int m = mat.length;
        int n = mat[0].length;
        if (m == 1) {
            res = n;
            Arrays.sort(mat[0]);
            for (int i = 1; i < n; i++) {
                if (mat[0][i] == mat[0][i - 1]) {
                    res--;
                }
            }
            return res;
        } else if (n == 1) {
            res = m;
            Arrays.sort(mat, (a, b) -> a[0] - b[0]);
            for (int i = 1; i < m; i++) {
                if (mat[i][0] == mat[i - 1][0]) {
                    res--;
                }
            }
            return res;
        }

        int l = m * n;
        // 将二维坐标映射到一维,dp记录的是从该点为起点的能移动的最大次数
        int[] dp = new int[l];
        Arrays.fill(dp, -1);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                res = Math.max(res, move(mat, mat[i][j], i * n + j, i, j, dp));
            }
        }
        return res;
    }

    public int move(int[][] mat, int curVal, int next, int i, int j, int[] dp) {
        int m = mat.length;
        int n = mat[0].length;
        if (dp[next] > -1) {
            return dp[next];
        } else if (dp[next] == -2) {
            return 1;
        }
        boolean noNext = true;
        for (int k = 0; k < n; k++) {
            if (mat[i][k] > curVal) {
                noNext = false;
                dp[next] = Math.max(dp[next], move(mat, mat[i][k], i * n + k, i, k, dp) + 1);
            }
        }
        for (int k = 0; k < m; k++) {
            if (mat[k][j] > curVal) {
                noNext = false;
                dp[next] = Math.max(dp[next], move(mat, mat[k][j], k * n + j, k, j, dp) + 1);
            }
        }
        if (noNext) {
            dp[next] = -2;
            return 1;
        }

        return dp[next];
    }

}

性能

522.最长特殊序列ⅠⅠ

目标

给定字符串列表 strs ,返回其中 最长的特殊序列 的长度。如果最长特殊序列不存在,返回 -1 。

特殊序列 定义如下:该序列为某字符串 独有的子序列(即不能是其他字符串的子序列)。

s 的 子序列可以通过删去字符串 s 中的某些字符实现。

  • 例如,"abc" 是 "aebdc" 的子序列,因为您可以删除"aebdc"中的下划线字符来得到 "abc" 。"aebdc"的子序列还包括"aebdc"、 "aeb" 和 "" (空字符串)。

示例 1:

输入: strs = ["aba","cdc","eae"]
输出: 3

示例 2:

输入: strs = ["aaa","aaa","aa"]
输出: -1

说明:

  • 2 <= strs.length <= 50
  • 1 <= strs[i].length <= 10
  • strs[i] 只包含小写英文字母

思路

想要使用动态规划一定要先写弄清递推公式,否则思考的方向错了,编码会更加复杂。

这个题需要将每一个字符串与其它字符串比较,判断是否是其它字符串的子序列。

我们无法利用前面计算过的最长特殊序列来得出新的最长特殊序列,例如:

  • "aabbcc", "aabbcc", "cb", "abc" 前两个字符串没有特殊子序列,前三个字符串最长特殊子序列为 "cb",而单看 "cb" 与 "abc" 的最长特殊序列是 "abc",但 "abc" 是前面两个字符串的子序列。
  • "a", "b", "c", "d", "e", "f", "a", "b", "c", "d", "e", "f" 这组字符串如果不到最后一个,最长特殊子序列长度为1,如果整体来看子序列都不是唯一的。

//todo

代码

性能

202.快乐数

目标

编写一个算法来判断一个数 n 是不是快乐数。

「快乐数」 定义为:

  • 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
  • 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
  • 如果这个过程 结果为 1,那么这个数就是快乐数。

如果 n 是 快乐数 就返回 true ;不是,则返回 false 。

示例 1:

输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1

示例 2:

输入:n = 2
输出:false

提示:

1 <= n <= 2^31 - 1

思路

难点是如何确定停止条件,我甚至想过记录循环次数如果超过某一个数就返回false。我意识到这可能是一个数学问题,就放弃了。

看了题解才明白,问题看似是开放的,但也是有规律的,关键是如何分析这个问题。

考虑最终可能出现的情况:

  • 最终会得到 1。
  • 最终会进入循环。
  • 值会越来越大,最后接近无穷大。

考虑不同位数数字的最大值,进行一次计算的结果:

位数 最大值 下一个值
1 9 81
2 99 162
3 999 243
4 9999 324
13 9999999999999 81*13=1053

相应位上小于最大值的数字,其下一个值也必定小于最大值的下一个值。

意识到存在循环是很重要的,然后我们可以使用哈希表记录出现过的元素,也可以使用弗洛伊德循环检测算法(Floyd's Cycle-Finding Algorithm)又称为龟兔赛跑算法(Tortoise and Hare Algorithm),注意不是图论中求最短路径的弗洛伊德算法。

// todo 自己实现一下

代码

/**
 * @date 2024-06-15 20:59
 */
public class IsHappy202 {

    /**
     * 快慢指针,也是用来检测链表中是否存在环
     * 快慢如果相遇就说明存在环,否则快的先遇到1
     */
    class Solution_v1 {
        public int getNext(int n) {
            int totalSum = 0;
            while (n > 0) {
                int d = n % 10;
                n = n / 10;
                totalSum += d * d;
            }
            return totalSum;
        }

        public boolean isHappy(int n) {
            int slowRunner = n;
            int fastRunner = getNext(n);
            while (fastRunner != 1 && slowRunner != fastRunner) {
                slowRunner = getNext(slowRunner);
                fastRunner = getNext(getNext(fastRunner));
            }
            return fastRunner == 1;
        }
    }

    /**
     * Set记录每次的数字,如果重复就返回false
     */
    class Solution {
        private int getNext(int n) {
            int totalSum = 0;
            while (n > 0) {
                int d = n % 10;
                n = n / 10;
                totalSum += d * d;
            }
            return totalSum;
        }

        public boolean isHappy(int n) {
            Set<Integer> seen = new HashSet<>();
            while (n != 1 && !seen.contains(n)) {
                seen.add(n);
                n = getNext(n);
            }
            return n == 1;
        }
    }

    /**
     * 实际上只会存在一个循环4→16→37→58→89→145→42→20→4
     */
    private static Set<Integer> cycleMembers =
        new HashSet<>(Arrays.asList(4, 16, 37, 58, 89, 145, 42, 20));

    public int getNext(int n) {
        int totalSum = 0;
        while (n > 0) {
            int d = n % 10;
            n = n / 10;
            totalSum += d * d;
        }
        return totalSum;
    }

    public boolean isHappy(int n) {
        while (n != 1 && !cycleMembers.contains(n)) {
            n = getNext(n);
        }
        return n == 1;
    }

}

性能

2786.访问数组中的位置使分数最大

目标

给你一个下标从 0 开始的整数数组 nums 和一个正整数 x 。

你 一开始 在数组的位置 0 处,你可以按照下述规则访问数组中的其他位置:

  • 如果你当前在位置 i ,那么你可以移动到满足 i < j 的 任意 位置 j 。
  • 对于你访问的位置 i ,你可以获得分数 nums[i] 。
  • 如果你从位置 i 移动到位置 j 且 nums[i] 和 nums[j] 的 奇偶性 不同,那么你将失去分数 x 。

请你返回你能得到的 最大 得分之和。

注意 ,你一开始的分数为 nums[0] 。

示例 1:

输入:nums = [2,3,6,1,9,2], x = 5
输出:13
解释:我们可以按顺序访问数组中的位置:0 -> 2 -> 3 -> 4 。
对应位置的值为 2 ,6 ,1 和 9 。因为 6 和 1 的奇偶性不同,所以下标从 2 -> 3 让你失去 x = 5 分。
总得分为:2 + 6 + 1 + 9 - 5 = 13 。

示例 2:

输入:nums = [2,4,6,8], x = 3
输出:20
解释:数组中的所有元素奇偶性都一样,所以我们可以将每个元素都访问一次,而且不会失去任何分数。
总得分为:2 + 4 + 6 + 8 = 20 。

说明:

  • 2 <= nums.length <= 10^5
  • 1 <= nums[i], x <= 10^6

思路

给定一个数组 nums 与 正整数 x,从下标 0 开始,允许从任意位置 i 开始向后访问位置 j,如果nums[i]nums[j] 的奇偶性相同,则可以获得 nums[j] 分,否则获得 nums[j] - x 分。求能够获得的分数总和的最大值。

刚开始就想到要从后向前,自底向上动态规划,如果当前的奇偶性与与后面的奇偶性相同就累加,否则就将后面的值减去x。接着又想到并不是要每一个节点都要访问,如果节点没有访问奇偶性和谁比较呢?并且后面的得分取决于前一个元素的奇偶性,考虑到昨天的题 子序列最大优雅度,觉得可能方向又错了。

于是就尝试贪心算法,从下标0开始,执行while循环,如果后面的元素奇偶性与之相同,直接累加。对于奇偶性不同的,我们可以考虑累加或者跳过。这样问题就变成了从这个新位置开始向后能获取的最大分数。注意新的位置奇偶性发生了变化。

这么一想问题又变成记忆化搜索了,于是就可以转换为递推/动态规划问题。

// todo 转换为动态规划的写法

代码

/**
 * @date 2024-06-14 8:43
 */
public class MaxScore2786 {

    public long maxScore(int[] nums, int x) {
        int n = nums.length;
        long[][] mem = new long[n + 1][2];
        for (int i = 0; i < mem.length; i++) {
            mem[i] = new long[]{Integer.MIN_VALUE, Integer.MIN_VALUE};
        }
        long res = nums[0];
        int flag = nums[0] % 2;
        int i = 1;
        while (i < n && nums[i] % 2 == flag) {
            res += nums[i];
            i++;
        }
        res += Math.max(0, maxScore(nums, x, i, flag, mem));
        return res;
    }

    public long maxScore(int[] nums, int x, int start, int preFlag, long[][] mem) {
        int n = nums.length;
        if (start >= n) {
            return 0;
        }
        // 如果选择该节点
        int flag = nums[start] % 2;
        long select = nums[start];
        if (preFlag != flag) {
            select -= x;
        }
        int i = start + 1;
        while (i < n && nums[i] % 2 == flag) {
            select += nums[i];
            i++;
        }
        if (mem[i][flag] == Integer.MIN_VALUE) {
            mem[i][flag] = maxScore(nums, x, i, flag, mem);
        }
        select += Math.max(0, mem[i][flag]);
        // 如果跳过该节点
        if (mem[start + 1][preFlag] == Integer.MIN_VALUE) {
            mem[start + 1][preFlag] = maxScore(nums, x, start + 1, preFlag, mem);
        }
        return Math.max(select, mem[start + 1][preFlag]);
    }

}

性能

2813.子序列最大优雅度

目标

给你一个长度为 n 的二维整数数组 items 和一个整数 k 。

items[i] = [profiti, categoryi],其中 profiti 和 categoryi 分别表示第 i 个项目的利润和类别。

现定义 items 的 子序列 的 优雅度 可以用 total_profit + distinct_categories^2 计算,其中 total_profit 是子序列中所有项目的利润总和,distinct_categories 是所选子序列所含的所有类别中不同类别的数量。

你的任务是从 items 所有长度为 k 的子序列中,找出 最大优雅度 。

用整数形式表示并返回 items 中所有长度恰好为 k 的子序列的最大优雅度。

注意:数组的子序列是经由原数组删除一些元素(可能不删除)而产生的新数组,且删除不改变其余元素相对顺序。

示例 1:

输入:items = [[3,2],[5,1],[10,1]], k = 2
输出:17
解释:
在这个例子中,我们需要选出长度为 2 的子序列。
其中一种方案是 items[0] = [3,2] 和 items[2] = [10,1] 。
子序列的总利润为 3 + 10 = 13 ,子序列包含 2 种不同类别 [2,1] 。
因此,优雅度为 13 + 22 = 17 ,可以证明 17 是可以获得的最大优雅度。 

示例 2:

输入:items = [[3,1],[3,1],[2,2],[5,3]], k = 3
输出:19
解释:
在这个例子中,我们需要选出长度为 3 的子序列。 
其中一种方案是 items[0] = [3,1] ,items[2] = [2,2] 和 items[3] = [5,3] 。
子序列的总利润为 3 + 2 + 5 = 10 ,子序列包含 3 种不同类别 [1, 2, 3] 。 
因此,优雅度为 10 + 32 = 19 ,可以证明 19 是可以获得的最大优雅度。

示例 3:

输入:items = [[1,1],[2,1],[3,1]], k = 3
输出:7
解释:
在这个例子中,我们需要选出长度为 3 的子序列。
我们需要选中所有项目。
子序列的总利润为 1 + 2 + 3 = 6,子序列包含 1 种不同类别 [1] 。
因此,最大优雅度为 6 + 12 = 7 。

说明:

  • 1 <= items.length == n <= 10^5
  • items[i].length == 2
  • items[i][0] == profiti
  • items[i][1] == categoryi
  • 1 <= profiti <= 10^9
  • 1 <= categoryi <= n
  • 1 <= k <= n

思路

已知一个二维数组,元素为[利润, 种类],数组子序列的优雅值定义为利润和 + 不同种类数量^2,让我们求子序列最大的优雅值是多少。

这道题没有做出来,思考方向错了。刚开始想的是使用记忆化搜索,但是后来发现问题的解不一定能够从子问题得出。即 k-1 子序列的优雅值不一定能够得到 k 子序列的优雅值。

例如:{10, 5} -> {10, 2}, {6, 1}, {9, 5},k = 3,我们先固定第一项,然后从后面取 k2 的优雅值最大子序列 {10, 2}, {9, 5}。但是与第一项结合之后,发现类别有重复的,优雅值为 29 + 4 = 33,小于取 {10, 2}, {6, 1} 得到的优雅值 26 + 9 = 35

因此使用递归或者动态规划都是不可解的,不能转换成规模更小的子问题。 //2024.06.14 也有可能是可以解的,只不过没有找到正确的切入点。参考访问数组中的位置使分数最大

官网题解使用的是贪心算法,由于后面会对之前的贪心选择做出调整,有网友称为反悔贪心算法。

由于我们求的是优雅值,相对顺序没有影响,因此可以排序。

然后先取最大的k个值,如果其中类别有重复的,尝试用后面的不同类别替换类别重复但利润较小的,直到没有重复的即可。

这是357场周赛的最后一题,2500多分。

代码

//todo

3040.相同分数的最大操作数目II

目标

给你一个整数数组 nums ,如果 nums 至少 包含 2 个元素,你可以执行以下操作中的 任意 一个:

  • 选择 nums 中最前面两个元素并且删除它们。
  • 选择 nums 中最后两个元素并且删除它们。
  • 选择 nums 中第一个和最后一个元素并且删除它们。

一次操作的 分数 是被删除元素的和。

在确保 所有操作分数相同 的前提下,请你求出 最多 能进行多少次操作。

请你返回按照上述要求 最多 可以进行的操作次数。

示例 1:

输入:nums = [3,2,1,2,3,4]
输出:3
解释:我们执行以下操作:
- 删除前两个元素,分数为 3 + 2 = 5 ,nums = [1,2,3,4] 。
- 删除第一个元素和最后一个元素,分数为 1 + 4 = 5 ,nums = [2,3] 。
- 删除第一个元素和最后一个元素,分数为 2 + 3 = 5 ,nums = [] 。
由于 nums 为空,我们无法继续进行任何操作。

示例 2:

输入:nums = [3,2,6,1,4]
输出:2
解释:我们执行以下操作:
- 删除前两个元素,分数为 3 + 2 = 5 ,nums = [6,1,4] 。
- 删除最后两个元素,分数为 1 + 4 = 5 ,nums = [6] 。
至多进行 2 次操作。

说明:

  • 2 <= nums.length <= 2000
  • 1 <= nums[i] <= 1000

思路

相同分数的最大操作数目I 增加了两种操作,可以删除最后两个元素或者一前一后两个元素。

我的思路是使用回溯算法,为了防止环的形成,使用自定义hash函数 (long) start << 16 | end; 记录已经搜索过的区间,并存入哈希表。

勉强通过了,看了官网题解,说是要用记忆搜索。网友还给出了递推的解法。//todo

代码

/**
 * @date 2024-06-08 20:03
 */
public class MaxOperations3040 {
    private Set<Long> set;

    public int maxOperations(int[] nums) {
        int res = 0;
        int n = nums.length;
        set = new HashSet<>();
        set.add(n - 1L);
        res = dfs(nums, 2, n - 1, nums[0] + nums[1], 1);
        res = Math.max(res, dfs(nums, 0, n - 3, nums[n - 2] + nums[n - 1], 1));
        res = Math.max(res, dfs(nums, 1, n - 2, nums[0] + nums[n - 1], 1));
        return res;
    }

    public int dfs(int[] nums, int start, int end, int target, int ops) {
        int res = ops;
        long key = (long) start << 16 | end;
        if (set.contains(key) || start >= end || res == nums.length / 2) {
            return res;
        }
        set.add(key);
        if (start < nums.length - 1 && nums[start] + nums[start + 1] == target) {
            res = dfs(nums, start + 2, end, target, ops + 1);
        }
        if (end >= 1 && nums[end] + nums[end - 1] == target) {
            res = Math.max(res, dfs(nums, start, end - 2, target, ops + 1));
        }
        if (end >= 0 && start < nums.length && nums[start] + nums[end] == target) {
            res = Math.max(res, dfs(nums, start + 1, end - 1, target, ops + 1));
        }
        return res;
    }

}

性能

2928.给小朋友们分糖果I

目标

给你两个正整数 n 和 limit 。

请你将 n 颗糖果分给 3 位小朋友,确保没有任何小朋友得到超过 limit 颗糖果,请你返回满足此条件下的 总方案数 。

示例 1:

输入:n = 5, limit = 2
输出:3
解释:总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 :(1, 2, 2) ,(2, 1, 2) 和 (2, 2, 1) 。

示例 2:

输入:n = 3, limit = 3
输出:10
解释:总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 :(0, 0, 3) ,(0, 1, 2) ,(0, 2, 1) ,(0, 3, 0) ,(1, 0, 2) ,(1, 1, 1) ,(1, 2, 0) ,(2, 0, 1) ,(2, 1, 0) 和 (3, 0, 0) 。

说明:

  • 1 <= n <= 50
  • 1 <= limit <= 50

思路

简单题数据范围小,直接暴力求解。别看不起暴力解法,真想用其它方法求解并不简单。

这道题要求解n个球装到三个容量为limit的盒子里总共有多少种分配方案。如果容量没有限制很简单直接从n+(3-1)个位置中选2个即可。

不暴力求解的话就要考虑动态规划了。// todo

代码

/**
 * @date 2024-06-01 15:59
 */
public class DistributeCandies2928 {
    public int distributeCandies(int n, int limit) {
        int res = 0;
        // 为第一个小朋友分配有0~limit种可能
        for (int i = 0; i <= limit; i++) {
            // 这时为第二个小朋友可以有n - i种可能,这里不要忘了不能超过limit
            for (int j = 0; j <= Math.min(limit, n - i); j++) {
                // 第三个小朋友,获取剩下的糖果,但不能超过limit
                if(n - i - j <= limit){
                    res++;
                }
            }
        }
        return res;
    }
}

性能

2981.找出出现至少三次的最长特殊子字符串I

目标

给你一个仅由小写英文字母组成的字符串 s 。

如果一个字符串仅由单一字符组成,那么它被称为 特殊 字符串。例如,字符串 "abc" 不是特殊字符串,而字符串 "ddd"、"zz" 和 "f" 是特殊字符串。

返回在 s 中出现 至少三次 的 最长特殊子字符串 的长度,如果不存在出现至少三次的特殊子字符串,则返回 -1 。

子字符串 是字符串中的一个连续 非空 字符序列。

示例 1:

输入:s = "aaaa"
输出:2
解释:出现三次的最长特殊子字符串是 "aa" :子字符串 "aaaa"、"aaaa" 和 "aaaa"。
可以证明最大长度是 2 。

示例 2:

输入:s = "abcdef"
输出:-1
解释:不存在出现至少三次的特殊子字符串。因此返回 -1 。

示例 3:

输入:s = "abcaba"
输出:1
解释:出现三次的最长特殊子字符串是 "a" :子字符串 "abcaba"、"abcaba" 和 "abcaba"。
可以证明最大长度是 1 。

说明:

  • 3 <= s.length <= 50
  • s 仅由小写英文字母组成。

思路

这道题要我们求给定字符串中至少出现三次的由相同字符组成的子串的最大长度。下面分情况讨论:

  • 如果特殊子串是连续的,那么取最大子串长度-2。例如:aaaa 有以下符合条件的特殊子串 (aa)aaa(aa)aaa(aa),至少出现三次的最长特殊子字符串长度为2。
  • 如果特殊子串个数为2:
    • 如果这两个子串长度相同,取长度-1。例如:aaa aaa 有以下符合条件的特殊子串 (aa)a a(aa) (aa)a a(aa),出现了4次,最长特殊子串长度为2。
    • 如果这两个子串长度不同,取 max(last -2 , secondTolast)。例如:aa aaa aaaa 有以下符合条件的特殊子串 (aaa) (aaa)a a(aaa),出现了3次,最长特殊子串长度为3。
  • 如果特殊子串个数大于2,取max(last -2 , thirdTolast)。例如:aa aaa aaa 有以下符合条件的特殊子串 (aa) (aa)a a(aa) (aa)a a(aa),出现了5次,最长特殊子串长度为3。

代码

/**
 * @date 2024-05-29 8:42
 */
public class MaximumLength2981 {
    public int maximumLength(String s) {
        int res = -1;
        Map<Character, List<Integer>> map = new HashMap<>(26);
        for (int i = 'a'; i <= 'z'; i++) {
            map.put((char) i, new ArrayList<>());
        }
        int n = s.length();
        char last = s.charAt(0);
        int cnt = 0;
        for (int i = 0; i < n; i++) {
            char c = s.charAt(i);
            if (c == last) {
                cnt++;
            } else {
                map.get(last).add(cnt);
                cnt = 1;
                last = c;
            }
            if (i == n - 1) {
                map.get(c).add(cnt);
            }
        }
        for (Map.Entry<Character, List<Integer>> entry : map.entrySet()) {
            List<Integer> occurrence = entry.getValue();
            int size = occurrence.size();
            Collections.sort(occurrence);
            if (size >= 2) {
                Integer secondToLastOccurrence = occurrence.get(size - 2);
                Integer lastOccurrence = occurrence.get(size - 1);
                if (lastOccurrence - secondToLastOccurrence >= 1) {
                    res = Math.max(res, Math.max(secondToLastOccurrence, lastOccurrence - 2));
                } else {
                    res = Math.max(res, lastOccurrence - 1);
                }
                if (size >= 3) {
                    res = Math.max(res, Math.max(occurrence.get(size - 3), occurrence.get(size - 1) - 2));
                }
            } else if (size == 1) {
                res = Math.max(res, occurrence.get(0) - 2);
            }
        }
        return res == 0 ? -1 : res;
    }
}

性能

// todo 性能优化

1738.找出第K大的异或坐标值

目标

给你一个二维矩阵 matrix 和一个整数 k ,矩阵大小为 m x n 由非负整数组成。

矩阵中坐标 (a, b) 的 值 可由对所有满足 0 <= i <= a < m 且 0 <= j <= b < n 的元素 matrix[i][j](下标从 0 开始计数)执行异或运算得到。

请你找出 matrix 的所有坐标中第 k 大的值(k 的值从 1 开始计数)。

示例 1:

输入:matrix = [[5,2],[1,6]], k = 1
输出:7
解释:坐标 (0,1) 的值是 5 XOR 2 = 7 ,为最大的值。

示例 2:

输入:matrix = [[5,2],[1,6]], k = 2
输出:5
解释:坐标 (0,0) 的值是 5 = 5 ,为第 2 大的值。

示例 3:

输入:matrix = [[5,2],[1,6]], k = 3
输出:4
解释:坐标 (1,0) 的值是 5 XOR 1 = 4 ,为第 3 大的值。

示例 4:

输入:matrix = [[5,2],[1,6]], k = 4
输出:0
解释:坐标 (1,1) 的值是 5 XOR 2 XOR 1 XOR 6 = 0 ,为第 4 大的值。

说明:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 1000
  • 0 <= matrix[i][j] <= 10^6
  • 1 <= k <= m * n

思路

求二维矩阵 matrix 的第k大的异或坐标值,元素 matrix[i][j] 的异或坐标值等于对matrix[0][0] ~ matrix[i][j]矩阵中的所有值进行异或运算。

我们可以先分别对每一行按列进行异或运算,然后再针对每一列按行进行异或运算。然后将它们放入优先队列,再取第k大的值即可。

官网题解用到了二维前缀和 + 排序/快速选择。// todo

代码

/**
 * @date 2024-05-26 19:07
 */
public class KthLargestValue11738 {
    public int kthLargestValue(int[][] matrix, int k) {
        int m = matrix.length;
        int n = matrix[0].length;
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a);
        int[][] dp = new int[m][n];
        for (int i = 0; i < m; i++) {
            dp[i][0] = matrix[i][0];
        }
        for (int i = 0; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i][j - 1] ^ matrix[i][j];
            }
        }
        for (int i = 1; i < m; i++) {
            for (int j = 0; j < n; j++) {
                dp[i][j] ^= dp[i - 1][j];
                q.offer(dp[i][j]);
            }
        }
        for (int i = 0; i < n; i++) {
            q.offer(dp[0][i]);
        }
        int res = 0;
        while (k > 0) {
            res = q.poll();
            k--;
        }

        return res;
    }
}

性能