3218.切蛋糕的最小总开销 I

目标

有一个 m x n 大小的矩形蛋糕,需要切成 1 x 1 的小块。

给你整数 m ,n 和两个数组:

  • horizontalCut 的大小为 m - 1 ,其中 horizontalCut[i] 表示沿着水平线 i 切蛋糕的开销。
  • verticalCut 的大小为 n - 1 ,其中 verticalCut[j] 表示沿着垂直线 j 切蛋糕的开销。

一次操作中,你可以选择任意不是 1 x 1 大小的矩形蛋糕并执行以下操作之一:

  1. 沿着水平线 i 切开蛋糕,开销为 horizontalCut[i] 。
  2. 沿着垂直线 j 切开蛋糕,开销为 verticalCut[j] 。

每次操作后,这块蛋糕都被切成两个独立的小蛋糕。

每次操作的开销都为最开始对应切割线的开销,并且不会改变。

请你返回将蛋糕全部切成 1 x 1 的蛋糕块的 最小 总开销。

示例 1:

输入:m = 3, n = 2, horizontalCut = [1,3], verticalCut = [5]
输出:13
解释:
沿着垂直线 0 切开蛋糕,开销为 5 。
沿着水平线 0 切开 3 x 1 的蛋糕块,开销为 1 。
沿着水平线 0 切开 3 x 1 的蛋糕块,开销为 1 。
沿着水平线 1 切开 2 x 1 的蛋糕块,开销为 3 。
沿着水平线 1 切开 2 x 1 的蛋糕块,开销为 3 。
总开销为 5 + 1 + 1 + 3 + 3 = 13 。

示例 2:

输入:m = 2, n = 2, horizontalCut = [7], verticalCut = [4]
输出:15
解释:
沿着水平线 0 切开蛋糕,开销为 7 。
沿着垂直线 0 切开 1 x 2 的蛋糕块,开销为 4 。
沿着垂直线 0 切开 1 x 2 的蛋糕块,开销为 4 。
总开销为 7 + 4 + 4 = 15 。

说明:

  • 1 <= m, n <= 20
  • horizontalCut.length == m - 1
  • verticalCut.length == n - 1
  • 1 <= horizontalCut[i], verticalCut[i] <= 10^3

思路

有一块 m x n 的蛋糕,horizontalCut[i] 表示水平切第 i 行的开销,verticalCut[i] 表示垂直切第 i 列的开销。求将蛋糕切成 1 x 1 小块的最小代价。

需要注意每次切的蛋糕必须是整块的,并不能将几块蛋糕排到一起切。

我们应该先沿着代价最大的位置切吗?比如大小为 2 x 100 的蛋糕,水平切的代价为 99,垂直切每一列的代价为 100。先切每一列代价为 99 * 100,然后对切开的 100 块水平切 100 次,代价为 100 * 99,总代价为 2 * 99 * 100。如果先水平切一次,代价为 99。然后需要垂直切 2 * 99 次,代价为 2 * 99 * 100,总代价为 99 + 2 * 99 * 100。这种贪心策略应该是可行的,因为每切一次块数会增加,现在不切代价大的,后面再切的时候代价会增加。

选择沿某一水平或垂直线切割时,需要记录水平 和 垂直方向蛋糕块的数量,用来计算代价。每切一次,横向与纵向的蛋糕块就会增加一个。

刚开始不确定能否使用贪心策略,考虑如何表示哪些切过了,哪些没切,卡了很久。关键点是如何将问题抽象建模,使用分治思想,不要面向过程。每切一次之后,问题转化为切剩余蛋糕的子问题。我们可以使用记忆化搜索解空间,求出最小值。

代码


/**
 * @date 2024-12-25 10:41
 */
public class MinimumCost3218 {

    public int minimumCost_v1(int m, int n, int[] horizontalCut, int[] verticalCut) {
        int horizontalCutPart = 1;
        int verticalCutPart = 1;
        Arrays.sort(horizontalCut);
        Arrays.sort(verticalCut);
        int h = horizontalCut.length - 1;
        int v = verticalCut.length - 1;
        int res = 0;
        while (h >= 0 || v >= 0) {
            if (h < 0){
                res += horizontalCutPart * verticalCut[v];
                v--;
                continue;
            }
            if (v < 0){
                res += verticalCutPart * horizontalCut[h];
                h--;
                continue;
            }
            if (horizontalCut[h] > verticalCut[v]) {
                res += verticalCutPart * horizontalCut[h];
                horizontalCutPart++;
                h--;
            } else if (horizontalCut[h] <= verticalCut[v]) {
                res += horizontalCutPart * verticalCut[v];
                verticalCutPart++;
                v--;
            }
        }

        return res;
    }

    int[] rowCost;
    int[] colCost;
    int[][][][] mem;

    public int minimumCost(int m, int n, int[] horizontalCut, int[] verticalCut) {
        this.rowCost = horizontalCut;
        this.colCost = verticalCut;
        mem = new int[m + 1][m + 1][n + 1][n + 1];
        // rowStart rowEnd colStart colEnd 表示蛋糕的边界
        //   0   1   2   3   4   5  ... n
        // 0  ———————————————————
        //   |   |   |   |   |   |
        // 1  ———————————————————
        //   |   |   |   |   |   |
        // 2  ———————————————————
        //   |   |   |   |   |   |
        // 3 ———————————————————
        //   |   |   |   |   |   |
        // 4 ———————————————————
        //   |   |   |   |   |   |
        // 5  ———————————————————
        // ...
        // m
        return dfs(0, m, 0, n);
    }

    public int dfs(int rowStart, int rowEnd, int colStart, int colEnd) {
        if (rowEnd - rowStart == 1 && colEnd - colStart == 1) {
            return 0;
        }
        int res = Integer.MAX_VALUE;
        for (int i = rowStart + 1; i < rowEnd; i++) {
            if (mem[rowStart][i][colStart][colEnd] == 0) {
                mem[rowStart][i][colStart][colEnd] = dfs(rowStart, i, colStart, colEnd);
            }
            if (mem[i][rowEnd][colStart][colEnd] == 0) {
                mem[i][rowEnd][colStart][colEnd] = dfs(i, rowEnd, colStart, colEnd);
            }
            res = Math.min(res, rowCost[i - 1] + mem[rowStart][i][colStart][colEnd] + mem[i][rowEnd][colStart][colEnd]);
        }
        for (int i = colStart + 1; i < colEnd; i++) {
            if (mem[rowStart][rowEnd][colStart][i] == 0) {
                mem[rowStart][rowEnd][colStart][i] = dfs(rowStart, rowEnd, colStart, i);
            }
            if (mem[rowStart][rowEnd][i][colEnd] == 0) {
                mem[rowStart][rowEnd][i][colEnd] = dfs(rowStart, rowEnd, i, colEnd);
            }
            res = Math.min(res, colCost[i - 1] + mem[rowStart][rowEnd][colStart][i] + mem[rowStart][rowEnd][i][colEnd]);
        }
        return res;
    }

}

性能

1387.将整数按权重排序

目标

我们将整数 x 的 权重 定义为按照下述规则将 x 变成 1 所需要的步数:

  • 如果 x 是偶数,那么 x = x / 2
  • 如果 x 是奇数,那么 x = 3 * x + 1

比方说,x=3 的权重为 7 。因为 3 需要 7 步变成 1 (3 --> 10 --> 5 --> 16 --> 8 --> 4 --> 2 --> 1)。

给你三个整数 lo, hi 和 k 。你的任务是将区间 [lo, hi] 之间的整数按照它们的权重 升序排序 ,如果大于等于 2 个整数有 相同 的权重,那么按照数字自身的数值 升序排序 。

请你返回区间 [lo, hi] 之间的整数按权重排序后的第 k 个数。

注意,题目保证对于任意整数 x (lo <= x <= hi) ,它变成 1 所需要的步数是一个 32 位有符号整数。

示例 1:

输入:lo = 12, hi = 15, k = 2
输出:13
解释:12 的权重为 9(12 --> 6 --> 3 --> 10 --> 5 --> 16 --> 8 --> 4 --> 2 --> 1)
13 的权重为 9
14 的权重为 17
15 的权重为 17
区间内的数按权重排序以后的结果为 [12,13,14,15] 。对于 k = 2 ,答案是第二个整数也就是 13 。
注意,12 和 13 有相同的权重,所以我们按照它们本身升序排序。14 和 15 同理。

示例 2:

输入:lo = 7, hi = 11, k = 4
输出:7
解释:区间内整数 [7, 8, 9, 10, 11] 对应的权重为 [16, 3, 19, 6, 14] 。
按权重排序后得到的结果为 [8, 10, 11, 7, 9] 。
排序后数组中第 4 个数字为 7 。

说明:

1 <= lo <= hi <= 1000
1 <= k <= hi - lo + 1

思路

定义整数 x 的权重为 将其变为 1 的操作次数,根据整数的奇偶性,可以执行不同的操作:

  • x 为偶数,x -> x / 2
  • x 为奇数,x -> 3 * x + 1

返回区间 [lo, hi] 之间的整数按权重排序后的第 k 个数。

根据题意模拟计算出每个数字的权重,将它和数字一起保存起来,然后按照权重、数值排序即可。

可以预处理 1 ~ 1000 内的所有权重,保存中间结果减少重复计算。

看到题目时我们都会有这样的疑问,如何证明 x 最终都会回到 1?有网友提到题目中的操作与考拉兹猜想(Collatz conjecture)的操作一样,由于操作过程与冰雹的形成和下落过程相似,因此也叫冰雹猜想。

代码


/**
 * @date 2024-12-22 16:20
 */
public class GetKth1387 {

    public int getKth(int lo, int hi, int k) {
        int n = hi - lo + 1;
        int[][] w = new int[n][2];
        int c = 0;
        for (int i = lo; i <= hi; i++) {
            w[c++] = new int[]{getWeight(i), i};
        }
        Arrays.sort(w, (a, b) -> {
            int compare = a[0] - b[0];
            if (compare != 0) {
                return compare;
            }
            return a[1] - b[1];
        });
        return w[k - 1][1];
    }

    public int getWeight(int x) {
        int cnt = 0;
        while (x > 1) {
            if (x % 2 == 0) {
                x >>= 1;
            } else {
                x = 3 * x + 1;
            }
            cnt++;
        }
        return cnt;
    }
}

性能

3250.单调数组对的数目I

目标

给你一个长度为 n 的 正 整数数组 nums 。

如果两个 非负 整数数组 (arr1, arr2) 满足以下条件,我们称它们是 单调 数组对:

  • 两个数组的长度都是 n 。
  • arr1 是单调 非递减 的,换句话说 arr1[0] <= arr1[1] <= ... <= arr1[n - 1] 。
  • arr2 是单调 非递增 的,换句话说 arr2[0] >= arr2[1] >= ... >= arr2[n - 1] 。
  • 对于所有的 0 <= i <= n - 1 都有 arr1[i] + arr2[i] == nums[i] 。

请你返回所有 单调 数组对的数目。

由于答案可能很大,请你将它对 10^9 + 7 取余 后返回。

示例 1:

输入:nums = [2,3,2]
输出:4
解释:
单调数组对包括:
([0, 1, 1], [2, 2, 1])
([0, 1, 2], [2, 2, 0])
([0, 2, 2], [2, 1, 0])
([1, 2, 2], [1, 1, 0])

示例 2:

输入:nums = [5,5,5,5]
输出:126

说明:

  • 1 <= n == nums.length <= 2000
  • 1 <= nums[i] <= 50

提示:

  • Let dp[i][s] is the number of monotonic pairs of length i with the arr1[i - 1] = s.
  • If arr1[i - 1] = s, arr2[i - 1] = nums[i - 1] - s.
  • Check if the state in recurrence is valid.

思路

有一个长度为 n 的正整数数组 nums,可以将其拆成两个数组 arr1 arr2,使之满足 arr1[i] + arr2[i] == nums[i]。问 有多少种拆分方法使得 arr1 非递减 且 arr2 非递增。

显然 arr1 确定之后,arr2 也就确定了。考虑枚举 arr1,判断 arr1 是否非递减, 以及arr2 是否非递增。可以使用记忆化搜索,对于位置 iarr1arr2 需要满足下面的条件:

  • arr1[i] >= arr1[i - 1]
  • arr2[i] = nums[i] - arr1[i] <= arr2[i - 1] = nums[i - 1] - arr1[i - 1],即 arr1[i] >= nums[i] - nums[i - 1] + arr1[i - 1]

也就是 nums[i] >= arr1[i] >= Math.max(nums[i] - nums[i - 1] + arr1[i - 1], arr1[i - 1])

代码


/**
 * @date 2024-11-28 10:36
 */
public class CountOfPairs3250 {

    public static int MOD = 1000000007;

    public int countOfPairs(int[] nums) {
        int res = 0;
        int n = nums.length;
        int[][] mem = new int[n + 1][51];
        for (int[] arr : mem) {
            Arrays.fill(arr, -1);
        }
        for (int i = 0; i <= nums[0]; i++) {
            res = (res + dfs(nums, 1, i, mem)) % MOD;
        }
        return res;
    }

    public int dfs(int[] nums, int i, int prev, int[][] mem) {
        int n = nums.length;
        if (i == n) {
            return 1;
        }
        int lowerBound = Math.max(prev, nums[i] - nums[i - 1] + prev);
        int next = i + 1;
        int res = 0;
        for (int j = lowerBound; j <= nums[i]; j++) {
            if (mem[next][j] == -1) {
                mem[next][j] = dfs(nums, next, j, mem) % MOD;
            }
            res = (res + mem[next][j]) % MOD;
        }
        return res;
    }

}

性能

638.大礼包

目标

在 LeetCode 商店中, 有 n 件在售的物品。每件物品都有对应的价格。然而,也有一些大礼包,每个大礼包以优惠的价格捆绑销售一组物品。

给你一个整数数组 price 表示物品价格,其中 price[i] 是第 i 件物品的价格。另有一个整数数组 needs 表示购物清单,其中 needs[i] 是需要购买第 i 件物品的数量。

还有一个数组 special 表示大礼包,special[i] 的长度为 n + 1 ,其中 special[i][j] 表示第 i 个大礼包中内含第 j 件物品的数量,且 special[i][n] (也就是数组中的最后一个整数)为第 i 个大礼包的价格。

返回 确切 满足购物清单所需花费的最低价格,你可以充分利用大礼包的优惠活动。你不能购买超出购物清单指定数量的物品,即使那样会降低整体价格。任意大礼包可无限次购买。

示例 1:

输入:price = [2,5], special = [[3,0,5],[1,2,10]], needs = [3,2]
输出:14
解释:有 A 和 B 两种物品,价格分别为 ¥2 和 ¥5 。 
大礼包 1 ,你可以以 ¥5 的价格购买 3A 和 0B 。 
大礼包 2 ,你可以以 ¥10 的价格购买 1A 和 2B 。 
需要购买 3 个 A 和 2 个 B , 所以付 ¥10 购买 1A 和 2B(大礼包 2),以及 ¥4 购买 2A 。

示例 2:

输入:price = [2,3,4], special = [[1,1,0,4],[2,2,1,9]], needs = [1,2,1]
输出:11
解释:A ,B ,C 的价格分别为 ¥2 ,¥3 ,¥4 。
可以用 ¥4 购买 1A 和 1B ,也可以用 ¥9 购买 2A ,2B 和 1C 。 
需要买 1A ,2B 和 1C ,所以付 ¥4 买 1A 和 1B(大礼包 1),以及 ¥3 购买 1B , ¥4 购买 1C 。 
不可以购买超出待购清单的物品,尽管购买大礼包 2 更加便宜。

说明:

  • n == price.length == needs.length
  • 1 <= n <= 6
  • 0 <= price[i], needs[i] <= 10
  • 1 <= special.length <= 100
  • special[i].length == n + 1
  • 0 <= special[i][j] <= 50
  • 生成的输入对于 0 <= j <= n - 1 至少有一个 special[i][j] 非零。

思路

有一个购物清单 needneed[i] 表示需要购买商品 i 的数量,price[i] 表示商品 i 的单价,此外还有一组大礼包 specialspecial[j][i] 表示大礼包 j 中包含的第 i 件商品的数量,并且 specal[j][n] 表示该大礼包的价格。求购买 need 清单中的商品最少花费多少钱,我们可以购买大礼包任意次,但是购买的总数量不能超过需求的数量,尽管可能价格更低。

完全背包问题是物品有无限个,背包容量有限,求能装下的最大价值/最小价值。如果将题目中的清单视为多个背包容量,单买物品 i,以及购买大礼包 j 中的商品 i 视为不同的商品,那么我们求的是装满所有背包的最小价值。问题在于,大礼包不光有商品 i,还有其它商品,如何处理?

网友题解将单买也看成大礼包,只不过其它商品数量为 0,这样可以统一处理大礼包。

// todo

代码

性能

3177.求出最长好子序列II

目标

给你一个整数数组 nums 和一个 非负 整数 k 。如果一个整数序列 seq 满足在范围下标范围 [0, seq.length - 2] 中存在 不超过 k 个下标 i 满足 seq[i] != seq[i + 1] ,那么我们称这个整数序列为 好 序列。

请你返回 nums 中 好 子序列 的最长长度

示例 1:

输入:nums = [1,2,1,1,3], k = 2
输出:4
解释:
最长好子序列为 [1,2,1,1,3] 。

示例 2:

输入:nums = [1,2,3,4,5,1], k = 0
输出:2
解释:
最长好子序列为 [1,2,3,4,5,1] 。

说明:

  • 1 <= nums.length <= 5 * 10^3
  • 1 <= nums[i] <= 10^9
  • 0 <= k <= min(50, nums.length)

思路

这个和昨天的题类似,只不过数据范围变了。

// todo

代码

性能

3176.求出最长好子序列I

目标

给你一个整数数组 nums 和一个 非负 整数 k 。如果一个整数序列 seq 满足在范围下标范围 [0, seq.length - 2] 中存在 不超过 k 个下标 i 满足 seq[i] != seq[i + 1] ,那么我们称这个整数序列为 好 序列。

请你返回 nums 中 好 子序列 的最长长度

示例 1:

输入:nums = [1,2,1,1,3], k = 2
输出:4
解释:
最长好子序列为 [1,2,1,1] 。

示例 2:

输入:nums = [1,2,3,4,5,1], k = 0
输出:2
解释:
最长好子序列为 [1,1] 。

说明:

  • 1 <= nums.length <= 500
  • 1 <= nums[i] <= 10^9
  • 0 <= k <= min(nums.length, 25)

提示:

  • The absolute values in nums don’t really matter. So we can remap the set of values to the range [0, n - 1].
  • Let dp[i][j] be the length of the longest subsequence till index j with at most i positions such that seq[i] != seq[i + 1].
  • For each value x from left to right, update dp[i][x] = max(dp[i][x] + 1, dp[i - 1][y] + 1), where y != x.

思路

求整数数组 nums 的子序列,要求子序列中最多存在 k 个下标 i 满足 seq[i] != seq[i + 1],即至多 k 对相邻元素 不同

只要选出了子序列,那么相邻元素 不同 的对数就已经确定。

记忆化搜索超时了 // todo

代码

性能

600.不含连续1的非负整数

目标

给定一个正整数 n ,请你统计在 [0, n] 范围的非负整数中,有多少个整数的二进制表示中不存在 连续的 1 。

示例 1:

输入: n = 5
输出: 5
解释: 
下面列出范围在 [0, 5] 的非负整数与其对应的二进制表示:
0 : 0
1 : 1
2 : 10
3 : 11
4 : 100
5 : 101
其中,只有整数 3 违反规则(有两个连续的 1 ),其他 5 个满足规则。

示例 2:

输入: n = 1
输出: 2

示例 3:

输入: n = 2
输出: 3

说明:

  • 1 <= n <= 10^9

思路

给定一个正整数n,求 [0, n] 范围内整数的二进制表示中不含连续1的整数个数。

由于n最大10^9,如果挨个判断整数是否含连续的bit 1,实际复杂度为O(31n),超时。

既然暴力解不行只能考虑其它方法。分析n的二进制表示,将问题转换为一定限制条件下的排列组合问题。求得二进制表示之后可以使用dfs来计算组合数。如果不使用记忆化搜索同样会超时,这里使用状态压缩来记录重复的子问题。状态指方法参数的组合,如果cur为1,则将高位置1与index相与,第二个维度0表示不可以将0改为1,1表示可以将0改为1。

官网题解使用的是递推。

代码

/**
 * @date 2024-08-05 10:20
 */
public class FindIntegers600 {

    public int findIntegers(int n) {
        List<Integer> bitmap = new ArrayList<>(32);
        while (n > 0) {
            bitmap.add(n & 1);
            n >>= 1;
        }
        int[][] mem = new int[(1 << 5) | (bitmap.size() - 1)][2];
        return dfs(0, bitmap, bitmap.size() - 1, false, mem);
    }

    public int dfs(int pre, List<Integer> bitmap, int index, boolean zeroToOne, int[][] mem) {
        int cur = bitmap.get(index);
        if (index == 0) {
            return pre == 0 && (cur == 1 || zeroToOne) ? 2 : 1;
        }
        int res = 0;
        index--;
        int size = bitmap.size();
        int key = (1 << 5) | index;
        int zto = zeroToOne ? 1 : 0;
        if (pre == 1 && cur == 1) {
            // 如果前一个是1,当前也是1,将1改为0,允许后续的0改为1
            if (mem[index][1] == 0) {
                mem[index][1] = dfs(cur - 1, bitmap, index, true, mem);
            }
            res = mem[index][1];
        } else if (pre == 0 && cur == 1) {
            // 如果前一个是0,当前是1,将1改为0,允许后续的0改为1,或者当前不变,后续是否允许0变1取决于zeroToOne
            if (mem[index][1] == 0) {
                mem[index][1] = dfs(cur - 1, bitmap, index, true, mem);
            }
            if (mem[key][zto] == 0) {
                mem[key][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][1] + mem[key][zto];
        } else if (pre == 0 && cur == 0) {
            // 如果前一个是0,当前是0,当前不变,后续是否允0变1许取决于zeroToOne,如果当前zeroToOne为true,将0改为1
            if (mem[index][zto] == 0) {
                mem[index][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][zto];
            if (zeroToOne) {
                if (mem[key][zto] == 0) {
                    mem[key][zto] = dfs(cur + 1, bitmap, index, zeroToOne, mem);
                }
                res += mem[key][zto];
            }
        } else {
            // 如果前一个是1,当前是0,当前不变,后续是否允许0变1取决于zeroToOne
            if (mem[index][zto] == 0) {
                mem[index][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][zto];
        }
        return res;
    }

}

性能

2850.将石头分散到网格图的最少移动次数

目标

给你一个大小为 3 * 3 ,下标从 0 开始的二维整数矩阵 grid ,分别表示每一个格子里石头的数目。网格图中总共恰好有 9 个石头,一个格子里可能会有 多个 石头。

每一次操作中,你可以将一个石头从它当前所在格子移动到一个至少有一条公共边的相邻格子。

请你返回每个格子恰好有一个石头的 最少移动次数 。

示例 1:

输入:grid = [[1,1,0],[1,1,1],[1,2,1]]
输出:3
解释:让每个格子都有一个石头的一个操作序列为:
1 - 将一个石头从格子 (2,1) 移动到 (2,2) 。
2 - 将一个石头从格子 (2,2) 移动到 (1,2) 。
3 - 将一个石头从格子 (1,2) 移动到 (0,2) 。
总共需要 3 次操作让每个格子都有一个石头。
让每个格子都有一个石头的最少操作次数为 3 。

示例 2:

输入:grid = [[1,3,0],[1,0,0],[1,0,3]]
输出:4
解释:让每个格子都有一个石头的一个操作序列为:
1 - 将一个石头从格子 (0,1) 移动到 (0,2) 。
2 - 将一个石头从格子 (0,1) 移动到 (1,1) 。
3 - 将一个石头从格子 (2,2) 移动到 (1,2) 。
4 - 将一个石头从格子 (2,2) 移动到 (2,1) 。
总共需要 4 次操作让每个格子都有一个石头。
让每个格子都有一个石头的最少操作次数为 4 。

说明:

  • grid.length == grid[i].length == 3
  • 0 <= grid[i][j] <= 9
  • grid 中元素之和为 9 。

思路

有一个3 * 3 的二维矩阵,有9个石头散落在其中,每次可以将石头移到相邻的格子里,问每个格子一块石头最少需要移动几次。

有多余石头的格子到没有石头格子移动的次数为其曼哈顿距离要想使移动次数最小,我们只需要从没有石头的格子向四个方向查找有多余石头的格子即可

并非是沿四个方向搜索,而是BFS找最短路径。 遍历四个方向,那么只能沿着该方向查找,而BFS则是由内层向外层查找,体会二者的不同。但这题使用BFS也无法保证得到的是最小移动次数,考虑下面的情况:

从0开始取最近的并不能保证得到最优解,比如下面这种情况:

3,2,0      3,1,1      2,1,1      2,1,1      2,1,1      1,1,1
0,1,0  ->  0,1,0  ->  1,1,0  ->  1,1,1  ->  1,1,1  ->  1,1,1
0,3,0      0,3,0      0,3,0      0,2,0      1,1,0      1,1,1
       1          1          2           1          4
左下角的应该从第一个元素取:

3,2,0      3,1,1      2,1,1      2,1,1      1,1,1      1,1,1
0,1,0  ->  0,1,0  ->  1,1,0  ->  1,1,1  ->  1,1,1  ->  1,1,1
0,3,0      0,3,0      0,3,0      0,2,0      1,2,0      1,1,1
       1          1          2           2          1

尽管这题使用BFS求解不了,但还是有一些收获的。BFS很容易错写成每次从队列取一个元素,然后判断该元素是否满足条件,不满足就将其邻接节点加入队列。当需要进行层次计数的时候就不对了,应该在每次循环的第一步记录队列中元素个数 k,本次处理中就循环判断这k个元素,在循环过程中判断是否满足条件,不满足的将其邻接节点加入队列,因为我们已经在前面计数了,因此这些邻接节点将在下一次循环中处理。

如果取最近的多余石头这种贪心策略不行的话,那么问题就不在于最短路径了。而应从整体上考虑从哪里移动到哪里才是最优的,可以尝试记忆化搜索解空间。我们可以很容易枚举出哪些格子没有石头,哪些格子石头多于1个,只需枚举它们的组合并取其曼哈顿距离之和最小值即可。

这里的核心问题是如何遍历这两个列表的组合,我想到的方法就是使用回溯算法,每向下递归一层就标记为已访问,而返回时再取消其标记。并且如果不保存重复子问题的话,执行会超时。这里的重复子问题是两组数据未访问元素相同,而已访问数据的组合不同。例如: [a,b,c,d,e,f,g] [h,i,j,k,l,m,n] 前面两个元素组合 (a, h) (b, i)(a, i) (b, h) 剩余的元素的组合情况完全相同。

最终使用状态压缩与回溯解出来了。如果不记录重复的子问题的话,dfs方法要调用3705927296次,而使用记忆化搜索只需调用12868次。

官网题解也是类似的思路,只不过遍历组合的方式不同,它是固定一个列表不变,另一个进行全排列。//todo 有空再研究一下官网题解吧

代码

/**
 * @date 2024-07-20 15:55
 */
public class MinimumMoves2850 {

    public int minimumMoves_v2(int[][] grid) {
        List<int[]> zeros = new ArrayList<>();
        List<int[]> more = new ArrayList<>();
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++) {
                if (grid[i][j] == 0) {
                    zeros.add(new int[]{i, j});
                } else if (grid[i][j] > 1) {
                    for (int k = 0; k < grid[i][j] - 1; k++) {
                        more.add(new int[]{i, j});
                    }
                }
            }
        }
        int k = zeros.size();
        int res = Integer.MAX_VALUE;
        int[][] mem = new int[255][255];

        for (int i = 0; i < k; i++) {
            // 状态压缩
            int zerosVisited = 0x000000ff;
            zerosVisited ^= 1 << i;
            int[] zero = zeros.get(i);
            for (int j = 0; j < k; j++) {
                int moreVisited = 0x000000ff;
                moreVisited ^= 1 << j;
                int[] m = more.get(j);
                int distance = Math.abs(zero[0] - m[0]) + Math.abs(zero[1] - m[1]);
                res = Math.min(res, distance + dfs_v2(zeros, more, zerosVisited, moreVisited, 1, mem));
            }
        }
        return res;
    }

    public int dfs_v2(List<int[]> zeros, List<int[]> more, int zerosVisited, int moreVisited, int level, int[][] mem) {
        if (level == zeros.size()) {
            return 0;
        }
        int k = zeros.size();
        int res = Integer.MAX_VALUE;
        for (int i = 0; i < k; i++) {
            if (((zerosVisited >> i) & 1) == 0) {
                continue;
            }
            zerosVisited ^= 1 << i;
            int[] zero = zeros.get(i);
            for (int j = 0; j < k; j++) {
                if (((moreVisited >> j) & 1) == 0) {
                    continue;
                }
                moreVisited ^= 1 << j;
                int[] m = more.get(j);
                int distance = Math.abs(zero[0] - m[0]) + Math.abs(zero[1] - m[1]);
                if (mem[zerosVisited][moreVisited] == 0) {
                    // 重复的子问题是两边剩余的元素均相同
                    mem[zerosVisited][moreVisited] = dfs_v2(zeros, more, zerosVisited, moreVisited, level + 1, mem);
                }
                res = Math.min(res, distance + mem[zerosVisited][moreVisited]);
                // 回溯
                moreVisited ^= 1 << j;
            }
            zerosVisited ^= 1 << i;
        }
        return res;
    }

}

性能

494.目标和

目标

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

说明:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

思路

有一个数组,可以在数组元素前加上正负号来组成表达式,问表达式等于target的数目。

如果当前元素为正则累加,否则相减,递归直到所有元素都已列入表达式,如果累加结果等于target则返回1,否则返回0。

//todo 改为递推,或记忆化搜索

代码

/**
 * @date 2024-06-30 20:07
 */
public class FindTargetSumWays494 {
    public int findTargetSumWays(int[] nums, int target) {
        return dfs(nums, 1, nums[0], target) + dfs(nums, 1, -nums[0], target);
    }

    public int dfs(int[] nums, int i, int res, int target) {
        if (i == nums.length) {
            return res - target == 0 ? 1 : 0;
        }
        return dfs(nums, i + 1, res + nums[i], target) + dfs(nums, i + 1, res - nums[i], target);
    }

}

性能

2741.特别的排列

目标

给你一个下标从 0 开始的整数数组 nums ,它包含 n 个 互不相同 的正整数。如果 nums 的一个排列满足以下条件,我们称它是一个特别的排列:

  • 对于 0 <= i < n - 1 的下标 i ,要么 nums[i] % nums[i+1] == 0 ,要么 nums[i+1] % nums[i] == 0 。

请你返回特别排列的总数目,由于答案可能很大,请将它对 109 + 7 取余 后返回。

示例 1:

输入:nums = [2,3,6]
输出:2
解释:[3,6,2] 和 [2,6,3] 是 nums 两个特别的排列。

示例 2:

输入:nums = [1,4,3]
输出:2
解释:[3,1,4] 和 [4,1,3] 是 nums 两个特别的排列。

说明:

  • 2 <= nums.length <= 14
  • 1 <= nums[i] <= 10^9

思路

有一个互不相同的正整数数组,问使得相邻元素可以被整除(对于相邻元素a % b == 0 || b % a == 0)的排列有多少种。

排列数的计算需要使用dfs,但如果不保存重复子问题的话会超时。

难点在于是否将保存的结果计入,例如 [2,6,3],虽然dfs 2 -> 6 -> 36 -> 2 -> 3有重复的子问题3,但是后者不符合题目条件。

// todo

代码

性能