2169.得到0的操作数

目标

给你两个 非负 整数 num1 和 num2 。

每一步 操作 中,如果 num1 >= num2 ,你必须用 num1 减 num2 ;否则,你必须用 num2 减 num1 。

  • 例如,num1 = 5 且 num2 = 4 ,应该用 num1 减 num2 ,因此,得到 num1 = 1 和 num2 = 4 。然而,如果 num1 = 4且 num2 = 5 ,一步操作后,得到 num1 = 4 和 num2 = 1 。

返回使 num1 = 0 或 num2 = 0 的 操作数 。

示例 1:

输入:num1 = 2, num2 = 3
输出:3
解释:
- 操作 1 :num1 = 2 ,num2 = 3 。由于 num1 < num2 ,num2 减 num1 得到 num1 = 2 ,num2 = 3 - 2 = 1 。
- 操作 2 :num1 = 2 ,num2 = 1 。由于 num1 > num2 ,num1 减 num2 。
- 操作 3 :num1 = 1 ,num2 = 1 。由于 num1 == num2 ,num1 减 num2 。
此时 num1 = 0 ,num2 = 1 。由于 num1 == 0 ,不需要再执行任何操作。
所以总操作数是 3 。

示例 2:

输入:num1 = 10, num2 = 10
输出:1
解释:
- 操作 1 :num1 = 10 ,num2 = 10 。由于 num1 == num2 ,num1 减 num2 得到 num1 = 10 - 10 = 0 。
此时 num1 = 0 ,num2 = 10 。由于 num1 == 0 ,不需要再执行任何操作。
所以总操作数是 1 。

说明:

  • 0 <= num1, num2 <= 10^5

思路

两个非负整数 num1num2,如果 num1 >= num2num1 -= num2,否则 num2 -= num1,直到 num1num2 变为 0

依题意模拟即可。

代码


/**
 * @date 2025-11-09 23:53
 */
public class CountOperations2169 {

    public int countOperations(int num1, int num2) {
        int res = 0;
        while (num1 != 0 && num2 != 0) {
            if (num1 >= num2) {
                num1 -= num2;
            } else {
                num2 -= num1;
            }
            res++;
        }
        return res;
    }
}

性能

2528.最大化城市的最小电量

目标

给你一个下标从 0 开始长度为 n 的整数数组 stations ,其中 stations[i] 表示第 i 座城市的供电站数目。

每个供电站可以在一定 范围 内给所有城市提供电力。换句话说,如果给定的范围是 r ,在城市 i 处的供电站可以给所有满足 |i - j| <= r 且 0 <= i, j <= n - 1 的城市 j 供电。

  • |x| 表示 x 的 绝对值 。比方说,|7 - 5| = 2 ,|3 - 10| = 7 。

一座城市的 电量 是所有能给它供电的供电站数目。

政府批准了可以额外建造 k 座供电站,你需要决定这些供电站分别应该建在哪里,这些供电站与已经存在的供电站有相同的供电范围。

给你两个整数 r 和 k ,如果以最优策略建造额外的发电站,返回所有城市中,最小电量的最大值是多少。

这 k 座供电站可以建在多个城市。

示例 1:

输入:stations = [1,2,4,5,0], r = 1, k = 2
输出:5
解释:
最优方案之一是把 2 座供电站都建在城市 1 。
每座城市的供电站数目分别为 [1,4,4,5,0] 。
- 城市 0 的供电站数目为 1 + 4 = 5 。
- 城市 1 的供电站数目为 1 + 4 + 4 = 9 。
- 城市 2 的供电站数目为 4 + 4 + 5 = 13 。
- 城市 3 的供电站数目为 5 + 4 = 9 。
- 城市 4 的供电站数目为 5 + 0 = 5 。
供电站数目最少是 5 。
无法得到更优解,所以我们返回 5 。

示例 2:

输入:stations = [4,4,4,4], r = 0, k = 3
输出:4
解释:
无论如何安排,总有一座城市的供电站数目是 4 ,所以最优解是 4 。

说明:

  • n == stations.length
  • 1 <= n <= 10^5
  • 0 <= stations[i] <= 10^5
  • 0 <= r <= n - 1
  • 0 <= k <= 10^9

思路

n 个城市,stations[i] 表示第 i 个城市的供电站数目,供电站可以为 r 范围内的城市供电,城市的电量定义为能够为它供电的电站数量。现在计划在这 n 个城市中额外建立 k 座供电站,求所有城市中最小电量的最大值是多少。

最大化最小值考虑枚举答案。贪心策略,如果当前城市供电量小于下限,则需要在 i + r 处建厂,因为前面的都已经满足了,在这里建厂可以更多地提高后面的下限。

代码


/**
 * @date 2025-11-07 10:57
 */
public class MaxPower2528 {

    public long maxPower(int[] stations, int r, int k) {
        int n = stations.length;
        long[] diff = new long[n + 1];
        long max = 0;
        for (int i = 0; i < n; i++) {
            max = Math.max(max, stations[i]);
            int left = Math.max(0, i - r);
            int right = Math.min(n, i + r + 1);
            diff[left] += stations[i];
            diff[right] -= stations[i];
        }
        long left = 0, right = (max + k) * (r + 1);
        long m = left + (right - left) / 2;
        while (left <= right) {
            if (check(diff, m, k, r)) {
                left = m + 1;
            } else {
                right = m - 1;
            }
            m = left + (right - left) / 2;
        }

        return right;
    }

    public boolean check(long[] diff, long target, int k, int r) {
        long sum = 0;
        int n = diff.length;
        long[] tmp = new long[n];
        System.arraycopy(diff, 0, tmp, 0, n);
        for (int i = 0; i < n - 1; i++) {
            sum += tmp[i];
            if (sum >= target) {
                continue;
            }
            long c = target - sum;
            if (k >= c ) {
                tmp[Math.min(n - 1, i + r + r + 1)] -= c;
                sum = target;
                k -= c;
            } else {
                return false;
            }

        }
        return true;
    }

}

性能

3607.电网维护

目标

给你一个整数 c,表示 c 个电站,每个电站有一个唯一标识符 id,从 1 到 c 编号。

这些电站通过 n 条 双向 电缆互相连接,表示为一个二维数组 connections,其中每个元素 connections[i] = [ui, vi] 表示电站 ui 和电站 vi 之间的连接。直接或间接连接的电站组成了一个 电网 。

最初,所有 电站均处于在线(正常运行)状态。

另给你一个二维数组 queries,其中每个查询属于以下 两种类型之一 :

  • [1, x]:请求对电站 x 进行维护检查。如果电站 x 在线,则它自行解决检查。如果电站 x 已离线,则检查由与 x 同一 电网 中 编号最小 的在线电站解决。如果该电网中 不存在 任何 在线 电站,则返回 -1。
  • [2, x]:电站 x 离线(即变为非运行状态)。

返回一个整数数组,表示按照查询中出现的顺序,所有类型为 [1, x] 的查询结果。

注意:电网的结构是固定的;离线(非运行)的节点仍然属于其所在的电网,且离线操作不会改变电网的连接性。

示例 1:

输入: c = 5, connections = [[1,2],[2,3],[3,4],[4,5]], queries = [[1,3],[2,1],[1,1],[2,2],[1,2]]
输出: [3,2,3]
解释:
最初,所有电站 {1, 2, 3, 4, 5} 都在线,并组成一个电网。
查询 [1,3]:电站 3 在线,因此维护检查由电站 3 自行解决。
查询 [2,1]:电站 1 离线。剩余在线电站为 {2, 3, 4, 5}。
查询 [1,1]:电站 1 离线,因此检查由电网中编号最小的在线电站解决,即电站 2。
查询 [2,2]:电站 2 离线。剩余在线电站为 {3, 4, 5}。
查询 [1,2]:电站 2 离线,因此检查由电网中编号最小的在线电站解决,即电站 3。

示例 2:

输入: c = 3, connections = [], queries = [[1,1],[2,1],[1,1]]
输出: [1,-1]
解释:
没有连接,因此每个电站是一个独立的电网。
查询 [1,1]:电站 1 在线,且属于其独立电网,因此维护检查由电站 1 自行解决。
查询 [2,1]:电站 1 离线。
查询 [1,1]:电站 1 离线,且其电网中没有其他电站,因此结果为 -1。

说明:

  • 1 <= c <= 10^5
  • 0 <= n == connections.length <= min(10^5, c * (c - 1) / 2)
  • connections[i].length == 2
  • 1 <= ui, vi <= c
  • ui != vi
  • 1 <= queries.length <= 2 * 10^5
  • queries[i].length == 2
  • queries[i][0] 为 1 或 2。
  • 1 <= queries[i][1] <= c

思路

c 个电站,编号为 1 ~ cconnections[i] = [ui, vi] 表示电站 uivi 相连,所有连通的电站组成了一个电网。查询 queries[i] = [operation, x],如果 operation2 表示将电站 x 离线,如果 operation1 并且 x 在线,返回 x,否则返回 x 所在电网中在线电站的最小编号,如果没有在线电站返回 -1

使用 有序集合 数组 维护不同电网的在线电站。如果离线就将其从有序集合中删掉 O(logn),否则先判断集合是否为空,如果集合为空返回 -1,再判断电站是否在集合中 O(logn),如果在则直接返回查询电站编号,否则取集合最小的编号。

代码


/**
 * @date 2025-11-06 9:03
 */
public class ProcessQueries3607 {

    private class UnionFind {
        private int[] fa;

        public UnionFind() {
        }

        public UnionFind(int n) {
            this.fa = new int[n];
            Arrays.setAll(this.fa, i -> i);
        }

        public int find(int x) {
            if (fa[x] != x) {
                fa[x] = find(fa[x]);
            }
            return fa[x];
        }

        public void merge(int x, int y) {
            int a = find(x);
            int b = find(y);
            if (a != b) {
                fa[b] = a;
            }
        }

    }

    public int[] processQueries(int c, int[][] connections, int[][] queries) {
        UnionFind uf = new UnionFind(c + 1);
        for (int[] connection : connections) {
            uf.merge(connection[0], connection[1]);
        }
        TreeSet<Integer>[] set = new TreeSet[c + 1];
        Arrays.setAll(set, i -> new TreeSet<>());
        for (int i = 1; i <= c; i++) {
            set[uf.find(i)].add(i);
        }
        List<Integer> list = new ArrayList<>();
        boolean[] off = new boolean[c + 1];
        for (int[] query : queries) {
            int operation = query[0];
            int node = query[1];
            int network = uf.find(node);
            if (operation == 1) {
                if (set[network].size() > 0) {
                    if (off[node]) {
                        list.add(set[network].first());
                    } else {
                        list.add(node);
                    }
                } else {
                    list.add(-1);
                }
            } else {
                off[node] = true;
                set[network].remove(node);
            }
        }
        return list.stream().mapToInt(i -> i).toArray();
    }
}

性能

3321.计算子数组的 x-sum II

目标

给你一个由 n 个整数组成的数组 nums,以及两个整数 k 和 x。

数组的 x-sum 计算按照以下步骤进行:

  • 统计数组中所有元素的出现次数。
  • 仅保留出现次数最多的前 x 个元素的每次出现。如果两个元素的出现次数相同,则数值 较大 的元素被认为出现次数更多。
  • 计算结果数组的和。

注意,如果数组中的不同元素少于 x 个,则其 x-sum 是数组的元素总和。

返回一个长度为 n - k + 1 的整数数组 answer,其中 answer[i] 是 子数组 nums[i..i + k - 1] 的 x-sum。

子数组 是数组内的一个连续 非空 的元素序列。

示例 1:

输入:nums = [1,1,2,2,3,4,2,3], k = 6, x = 2
输出:[6,10,12]
解释:
对于子数组 [1, 1, 2, 2, 3, 4],只保留元素 1 和 2。因此,answer[0] = 1 + 1 + 2 + 2。
对于子数组 [1, 2, 2, 3, 4, 2],只保留元素 2 和 4。因此,answer[1] = 2 + 2 + 2 + 4。注意 4 被保留是因为其数值大于出现其他出现次数相同的元素(3 和 1)。
对于子数组 [2, 2, 3, 4, 2, 3],只保留元素 2 和 3。因此,answer[2] = 2 + 2 + 2 + 3 + 3。

示例 2:

输入:nums = [3,8,7,8,7,5], k = 2, x = 2
输出:[11,15,15,15,12]
解释:
由于 k == x,answer[i] 等于子数组 nums[i..i + k - 1] 的总和。

说明:

  • nums.length == n
  • 1 <= n <= 10^5
  • 1 <= nums[i] <= 10^9
  • 1 <= x <= k <= nums.length

思路

//todo

  • 295.数据流的中位数
  • 480.滑动窗口中位数
  • 3013.将数组分成最小总代价的子数组 II

代码

性能

3318.计算子数组的 x-sum I

目标

给你一个由 n 个整数组成的数组 nums,以及两个整数 k 和 x。

数组的 x-sum 计算按照以下步骤进行:

  • 统计数组中所有元素的出现次数。
  • 仅保留出现次数最多的前 x 个元素的每次出现。如果两个元素的出现次数相同,则数值 较大 的元素被认为出现次数更多。
  • 计算结果数组的和。

注意,如果数组中的不同元素少于 x 个,则其 x-sum 是数组的元素总和。

返回一个长度为 n - k + 1 的整数数组 answer,其中 answer[i] 是 子数组 nums[i..i + k - 1] 的 x-sum。

子数组 是数组内的一个连续 非空 的元素序列。

示例 1:

输入:nums = [1,1,2,2,3,4,2,3], k = 6, x = 2
输出:[6,10,12]
解释:
对于子数组 [1, 1, 2, 2, 3, 4],只保留元素 1 和 2。因此,answer[0] = 1 + 1 + 2 + 2。
对于子数组 [1, 2, 2, 3, 4, 2],只保留元素 2 和 4。因此,answer[1] = 2 + 2 + 2 + 4。注意 4 被保留是因为其数值大于出现其他出现次数相同的元素(3 和 1)。
对于子数组 [2, 2, 3, 4, 2, 3],只保留元素 2 和 3。因此,answer[2] = 2 + 2 + 2 + 3 + 3。

示例 2:

输入:nums = [3,8,7,8,7,5], k = 2, x = 2
输出:[11,15,15,15,12]
解释:
由于 k == x,answer[i] 等于子数组 nums[i..i + k - 1] 的总和。

说明:

  • 1 <= n == nums.length <= 50
  • 1 <= nums[i] <= 50
  • 1 <= x <= k <= nums.length

思路

计算长度为 k 的滑动窗口内的 x-sum,即出现次数最大的前 x 个元素的元素和。

暴力解法是直接模拟,使用哈希表记录 元素值与出现次数,使用优先队列保存,取出现次数前 x 大的所有元素和。

代码


/**
 * @date 2025-11-04 0:27
 */
public class FindXSum3318 {

    public int[] findXSum(int[] nums, int k, int x) {
        int n = nums.length;
        int[] res = new int[n - k + 1];
        for (int i = 0; i < n - k + 1; i++) {
            Map<Integer, Counter> map = new HashMap<>();
            PriorityQueue<Counter> q = new PriorityQueue<>((a, b) -> {
                int compare = b.cnt - a.cnt;
                if (compare != 0) {
                    return compare;
                }
                return b.digit - a.digit;
            });
            for (int j = i; j < i + k; j++) {
                map.putIfAbsent(nums[j], new Counter(nums[j], 0));
                map.get(nums[j]).cnt++;
            }
            for (Counter value : map.values()) {
                q.offer(value);
            }
            int c = x;
            while (c > 0 && !q.isEmpty()) {
                Counter counter = q.poll();
                res[i] += counter.cnt * counter.digit;
                c--;
            }
        }
        return res;
    }

    public class Counter {
        int digit;
        int cnt;

        public Counter(int digit, int cnt) {
            this.digit = digit;
            this.cnt = cnt;
        }

        public Counter() {
        }
    }

}

性能

1578.使绳子变成彩色的最短时间

目标

Alice 把 n 个气球排列在一根绳子上。给你一个下标从 0 开始的字符串 colors ,其中 colors[i] 是第 i 个气球的颜色。

Alice 想要把绳子装扮成 五颜六色的 ,且她不希望两个连续的气球涂着相同的颜色,所以她喊来 Bob 帮忙。Bob 可以从绳子上移除一些气球使绳子变成 彩色 。给你一个 下标从 0 开始 的整数数组 neededTime ,其中 neededTime[i] 是 Bob 从绳子上移除第 i 个气球需要的时间(以秒为单位)。

返回 Bob 使绳子变成 彩色 需要的 最少时间 。

示例 1:

输入:colors = "abaac", neededTime = [1,2,3,4,5]
输出:3
解释:在上图中,'a' 是蓝色,'b' 是红色且 'c' 是绿色。
Bob 可以移除下标 2 的蓝色气球。这将花费 3 秒。
移除后,不存在两个连续的气球涂着相同的颜色。总时间 = 3 。

示例 2:

输入:colors = "abc", neededTime = [1,2,3]
输出:0
解释:绳子已经是彩色的,Bob 不需要从绳子上移除任何气球。

示例 3:

输入:colors = "aabaa", neededTime = [1,2,3,4,1]
输出:2
解释:Bob 会移除下标 0 和下标 4 处的气球。这两个气球各需要 1 秒来移除。
移除后,不存在两个连续的气球涂着相同的颜色。总时间 = 1 + 1 = 2 。

说明:

  • n == colors.length == neededTime.length
  • 1 <= n <= 10^5
  • 1 <= neededTime[i] <= 10^4
  • colors 仅由小写英文字母组成

思路

水平的绳子上绑着一排气球,现在要使相邻的气球颜色不同,需要解开一些气球,解开每个气球的时间为 neededTime[i] 求所需的最短时间。

将相邻的颜色相同的气球放入堆中,仅保留耗时最大的即可。

代码


/**
 * @date 2025-11-03 8:56
 */
public class MinCost1578 {

    public int minCost(String colors, int[] neededTime) {
        int n = neededTime.length;
        int i = 0;
        int res = 0;
        while (i < n) {
            int max = i;
            int sum = 0;
            char c = colors.charAt(i);
            while (i < n && c == colors.charAt(i)) {
                if (neededTime[i] > neededTime[max]) {
                    max = i;
                }
                sum += neededTime[i++];
            }
            res += sum - neededTime[max];
        }
        return res;
    }

}

性能

3217.从链表中移除在数组中存在的节点

目标

给你一个整数数组 nums 和一个链表的头节点 head。从链表中移除所有存在于 nums 中的节点后,返回修改后的链表的头节点。

示例 1:

输入: nums = [1,2,3], head = [1,2,3,4,5]
输出: [4,5]
解释:
移除数值为 1, 2 和 3 的节点。

示例 2:

输入: nums = [1], head = [1,2,1,2,1,2]
输出: [2,2,2]
解释:
移除数值为 1 的节点。

示例 3:

输入: nums = [5], head = [1,2,3,4]
输出: [1,2,3,4]
解释:
链表中不存在值为 5 的节点。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^5
  • nums 中的所有元素都是唯一的。
  • 链表中的节点数在 [1, 10^5] 的范围内。
  • 1 <= Node.val <= 10^5
  • 输入保证链表中至少有一个值没有在 nums 中出现过。

思路

依题意模拟即可,删除链表中的指定节点。

代码


/**
 * @date 2025-11-03 13:55
 */
public class ModifiedList3217 {

    public ListNode modifiedList_v1(int[] nums, ListNode head) {
        Set<Integer> set = new HashSet<>(nums.length, 1);
        for (int num : nums) {
            set.add(num);
        }
        ListNode dummy = new ListNode(0, head);
        ListNode prev = dummy;
        while (head != null) {
            if (set.contains(head.val)) {
                prev.next = head.next;
            } else {
                prev = head;
            }
            head = head.next;
        }
        return dummy.next;
    }

}

/**
 * Definition for singly-linked list.
 * public class ListNode {
 * int val;
 * ListNode next;
 * ListNode() {}
 * ListNode(int val) { this.val = val; }
 * ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */

性能