1728.猫和老鼠II

目标

一只猫和一只老鼠在玩一个叫做猫和老鼠的游戏。

它们所处的环境设定是一个 rows x cols 的方格 grid ,其中每个格子可能是一堵墙、一块地板、一位玩家(猫或者老鼠)或者食物。

  • 玩家由字符 'C' (代表猫)和 'M' (代表老鼠)表示。
  • 地板由字符 '.' 表示,玩家可以通过这个格子。
  • 墙用字符 '#' 表示,玩家不能通过这个格子。
  • 食物用字符 'F' 表示,玩家可以通过这个格子。
  • 字符 'C' , 'M' 和 'F' 在 grid 中都只会出现一次。

猫和老鼠按照如下规则移动:

  • 老鼠 先移动 ,然后两名玩家轮流移动。
  • 每一次操作时,猫和老鼠可以跳到上下左右四个方向之一的格子,他们不能跳过墙也不能跳出 grid 。
  • catJump 和 mouseJump 是猫和老鼠分别跳一次能到达的最远距离,它们也可以跳小于最大距离的长度。
  • 它们可以停留在原地。
  • 老鼠可以跳跃过猫的位置。

游戏有 4 种方式会结束:

  • 如果猫跟老鼠处在相同的位置,那么猫获胜。
  • 如果猫先到达食物,那么猫获胜。
  • 如果老鼠先到达食物,那么老鼠获胜。
  • 如果老鼠不能在 1000 次操作以内到达食物,那么猫获胜。

给你 rows x cols 的矩阵 grid 和两个整数 catJump 和 mouseJump ,双方都采取最优策略,如果老鼠获胜,那么请你返回 true ,否则返回 false 。

示例 1:

输入:grid = ["####F","#C...","M...."], catJump = 1, mouseJump = 2
输出:true
解释:猫无法抓到老鼠,也没法比老鼠先到达食物。

示例 2:

输入:grid = ["M.C...F"], catJump = 1, mouseJump = 4
输出:true

示例 3:

输入:grid = ["M.C...F"], catJump = 1, mouseJump = 3
输出:false

示例 4:

输入:grid = ["C...#","...#F","....#","M...."], catJump = 2, mouseJump = 5
输出:false

示例 5:

输入:grid = [".M...","..#..","#..#.","C#.#.","...#F"], catJump = 3, mouseJump = 1
输出:true

说明:

  • rows == grid.length
  • cols = grid[i].length
  • 1 <= rows, cols <= 8
  • grid[i][j] 只包含字符 'C' ,'M' ,'F' ,'.' 和 '#' 。
  • grid 中只包含一个 'C' ,'M' 和 'F' 。
  • 1 <= catJump, mouseJump <= 8

思路

//todo

代码

性能

913.猫和老鼠

目标

两位玩家分别扮演猫和老鼠,在一张 无向 图上进行游戏,两人轮流行动。

图的形式是:graph[a] 是一个列表,由满足 ab 是图中的一条边的所有节点 b 组成。

老鼠从节点 1 开始,第一个出发;猫从节点 2 开始,第二个出发。在节点 0 处有一个洞。

在每个玩家的行动中,他们 必须 沿着图中与所在当前位置连通的一条边移动。例如,如果老鼠在节点 1 ,那么它必须移动到 graph[1] 中的任一节点。

此外,猫无法移动到洞中(节点 0)。

然后,游戏在出现以下三种情形之一时结束:

  • 如果猫和老鼠出现在同一个节点,猫获胜。
  • 如果老鼠到达洞中,老鼠获胜。
  • 如果某一位置重复出现(即,玩家的位置和移动顺序都与上一次行动相同),游戏平局。

给你一张图 graph ,并假设两位玩家都都以最佳状态参与游戏:

  • 如果老鼠获胜,则返回 1;
  • 如果猫获胜,则返回 2;
  • 如果平局,则返回 0 。

示例 1:

输入:graph = [[2,5],[3],[0,4,5],[1,4,5],[2,3],[0,2,3]]
输出:0

示例 2:

输入:graph = [[1,3],[0],[3],[0,2]]
输出:1

说明:

  • 3 <= graph.length <= 50
  • 1 <= graph[i].length < graph.length
  • 0 <= graph[i][j] < graph.length
  • graph[i][j] != i
  • graph[i] 互不相同
  • 猫和老鼠在游戏中总是可以移动

思路

// todo

代码

性能

731.我的日程安排表II

目标

实现一个程序来存放你的日程安排。如果要添加的时间内不会导致三重预订时,则可以存储这个新的日程安排。

当三个日程安排有一些时间上的交叉时(例如三个日程安排都在同一时间内),就会产生 三重预订。

事件能够用一对整数 startTime 和 endTime 表示,在一个半开区间的时间 [startTime, endTime) 上预定。实数 x 的范围为 startTime <= x < endTime。

实现 MyCalendarTwo 类:

  • MyCalendarTwo() 初始化日历对象。
  • boolean book(int startTime, int endTime) 如果可以将日程安排成功添加到日历中而不会导致三重预订,返回 true。否则,返回 false 并且不要将该日程安排添加到日历中。

示例 1:

输入:
["MyCalendarTwo", "book", "book", "book", "book", "book", "book"]
[[], [10, 20], [50, 60], [10, 40], [5, 15], [5, 10], [25, 55]]
输出:
[null, true, true, true, false, true, true]
解释:
MyCalendarTwo myCalendarTwo = new MyCalendarTwo();
myCalendarTwo.book(10, 20); // 返回 True,能够预定该日程。
myCalendarTwo.book(50, 60); // 返回 True,能够预定该日程。
myCalendarTwo.book(10, 40); // 返回 True,该日程能够被重复预定。
myCalendarTwo.book(5, 15);  // 返回 False,该日程导致了三重预定,所以不能预定。
myCalendarTwo.book(5, 10); // 返回 True,能够预定该日程,因为它不使用已经双重预订的时间 10。
myCalendarTwo.book(25, 55); // 返回 True,能够预定该日程,因为时间段 [25, 40) 将被第三个日程重复预定,时间段 [40, 50) 将被单独预定,而时间段 [50, 55) 将被第二个日程重复预定。

说明:

  • 0 <= start < end <= 10^9
  • 最多调用 book 1000 次。

思路

本题与 729.我的日程安排表I 的区别是允许相交一次。

使用差分数组记录区间元素被覆盖的次数,由于数据范围太大,这里使用 TreeMap 计数。

// todo 线段树

代码


/**
 * @date 2025-01-03 10:32
 */
public class MyCalendarTwo {

    TreeMap<Integer, Integer> cnt = new TreeMap<>();

    public MyCalendarTwo() {

    }

    public boolean book(int startTime, int endTime) {
        cnt.put(startTime, cnt.getOrDefault(startTime, 0) + 1);
        cnt.put(endTime, cnt.getOrDefault(endTime, 0) - 1);
        int appearanceCnt = 0;
        for (Map.Entry<Integer, Integer> entry : cnt.entrySet()) {
            int key = entry.getKey();
            int value = entry.getValue();
            if (key >= endTime) {
                break;
            }
            appearanceCnt += value;
            if (appearanceCnt > 2) {
                cnt.put(startTime, cnt.getOrDefault(startTime, 0) - 1);
                cnt.put(endTime, cnt.getOrDefault(endTime, 0) + 1);
                return false;
            }
        }
        return true;
    }
}

性能

2545.根据第K场考试的分数排序

目标

班里有 m 位学生,共计划组织 n 场考试。给你一个下标从 0 开始、大小为 m x n 的整数矩阵 score ,其中每一行对应一位学生,而 score[i][j] 表示第 i 位学生在第 j 场考试取得的分数。矩阵 score 包含的整数 互不相同 。

另给你一个整数 k 。请你按第 k 场考试分数从高到低完成对这些学生(矩阵中的行)的排序。

返回排序后的矩阵。

示例 1:

输入:score = [[10,6,9,1],[7,5,11,2],[4,8,3,15]], k = 2
输出:[[7,5,11,2],[10,6,9,1],[4,8,3,15]]
解释:在上图中,S 表示学生,E 表示考试。
- 下标为 1 的学生在第 2 场考试取得的分数为 11 ,这是考试的最高分,所以 TA 需要排在第一。
- 下标为 0 的学生在第 2 场考试取得的分数为 9 ,这是考试的第二高分,所以 TA 需要排在第二。
- 下标为 2 的学生在第 2 场考试取得的分数为 3 ,这是考试的最低分,所以 TA 需要排在第三。

示例 2:

输入:score = [[3,4],[5,6]], k = 0
输出:[[5,6],[3,4]]
解释:在上图中,S 表示学生,E 表示考试。
- 下标为 1 的学生在第 0 场考试取得的分数为 5 ,这是考试的最高分,所以 TA 需要排在第一。
- 下标为 0 的学生在第 0 场考试取得的分数为 3 ,这是考试的最低分,所以 TA 需要排在第二。

说明:

  • m == score.length
  • n == score[i].length
  • 1 <= m, n <= 250
  • 1 <= score[i][j] <= 10^5
  • score 由 不同 的整数组成
  • 0 <= k < n

思路

有一个二维矩阵 score[i][j],根据第 k 列的值进行排序,返回排序后的数组。

直接调用 API 就是一个简单题,本题应该是考察手写排序吧。

// todo

代码


/**
 * @date 2024-12-21 17:31
 */
public class SortTheStudents2545 {

    public int[][] sortTheStudents(int[][] score, int k) {
        Arrays.sort(score, (a, b) -> b[k] - a[k]);
        return score;
    }
}

性能

3291.形成目标字符串需要的最少字符串数I

目标

给你一个字符串数组 words 和一个字符串 target。

如果字符串 x 是 words 中 任意 字符串的 前缀,则认为 x 是一个 有效 字符串。

现计划通过 连接 有效字符串形成 target ,请你计算并返回需要连接的 最少 字符串数量。如果无法通过这种方式形成 target,则返回 -1。

示例 1:

输入: words = ["abc","aaaaa","bcdef"], target = "aabcdabc"
输出: 3
解释:
target 字符串可以通过连接以下有效字符串形成:
words[1] 的长度为 2 的前缀,即 "aa"。
words[2] 的长度为 3 的前缀,即 "bcd"。
words[0] 的长度为 3 的前缀,即 "abc"。

示例 2:

输入: words = ["abababab","ab"], target = "ababaababa"
输出: 2
解释:
target 字符串可以通过连接以下有效字符串形成:
words[0] 的长度为 5 的前缀,即 "ababa"。
words[0] 的长度为 5 的前缀,即 "ababa"。

示例 3:

输入: words = ["abcdef"], target = "xyz"
输出: -1

说明:

  • 1 <= words.length <= 100
  • 1 <= words[i].length <= 5 * 10^3
  • 输入确保 sum(words[i].length) <= 10^5。
  • words[i] 只包含小写英文字母。
  • 1 <= target.length <= 5 * 10^3
  • target 只包含小写英文字母。

思路

有一个字符串数组 words 和目标字符串 target,请你使用最少的字符串前缀组成 target,返回需要的字符串数量,如果无法组成 target 返回 -1

注意前缀是允许重复使用的,状态个数为 target.length ^ 2,深度为 100,直接使用记忆化搜索会超时。

使用字典树加动态规划可以勉强通过,但是明天的通过不了。

//todo KMP 算法 Z 函数 / 字符串哈希+二分 / AC 自动机

代码


/**
 * @date 2024-12-17 8:59
 */
public class MinValidStrings3291 {

    static public class Trie {
        public boolean isLeaf;
        public Trie[] children;

        public Trie() {
            this.children = new Trie[26];
        }

        public Trie build(String[] dict) {
            Trie root = this;
            for (String word : dict) {
                root = this;
                char[] chars = word.toCharArray();
                for (int i = 0; i < chars.length; i++) {
                    int c = chars[i] - 'a';
                    if (root.children[c] == null) {
                        root.children[c] = new Trie();
                    }
                    root = root.children[c];
                }
                root.isLeaf = true;
            }
            return root;
        }

        public int exists(char[] target, int start) {
            int n = target.length;
            int length = 0;
            Trie root = this;
            int c = target[start] - 'a';
            while (root.children[c] != null) {
                root = root.children[c];
                length++;
                start++;
                if (start == n) {
                    break;
                }
                c = target[start] - 'a';
            }
            return length;
        }

    }

    public int minValidStrings_v1(String[] words, String target) {
        Trie root = new Trie();
        root.build(words);
        char[] chars = target.toCharArray();
        int n = chars.length;
        int[] dp = new int[n];
        Arrays.fill(dp, Integer.MAX_VALUE);
        int length = root.exists(chars, 0);
        for (int i = 0; i < length; i++) {
            dp[i] = 1;
        }

        for (int i = 1; i < n; i++) {
            if (dp[i - 1] == Integer.MAX_VALUE) {
                return -1;
            }
            length = root.exists(chars, i);
            for (int j = i; j < i + length; j++) {
                dp[j] = Math.min(dp[j], dp[i - 1] + 1);
            }
        }

        return dp[n - 1] == Integer.MAX_VALUE ? -1 : dp[n - 1];
    }

}

性能

1847.最近的房间

目标

一个酒店里有 n 个房间,这些房间用二维整数数组 rooms 表示,其中 rooms[i] = [roomIdi, sizei] 表示有一个房间号为 roomIdi 的房间且它的面积为 sizei 。每一个房间号 roomIdi 保证是 独一无二 的。

同时给你 k 个查询,用二维数组 queries 表示,其中 queries[j] = [preferredj, minSizej] 。第 j 个查询的答案是满足如下条件的房间 id :

  • 房间的面积 至少 为 minSizej ,且
  • abs(id - preferredj) 的值 最小 ,其中 abs(x) 是 x 的绝对值。

如果差的绝对值有 相等 的,选择 最小 的 id 。如果 没有满足条件的房间 ,答案为 -1 。

请你返回长度为 k 的数组 answer ,其中 answer[j] 为第 j 个查询的结果。

示例 1:

输入:rooms = [[2,2],[1,2],[3,2]], queries = [[3,1],[3,3],[5,2]]
输出:[3,-1,3]
解释:查询的答案如下:
查询 [3,1] :房间 3 的面积为 2 ,大于等于 1 ,且号码是最接近 3 的,为 abs(3 - 3) = 0 ,所以答案为 3 。
查询 [3,3] :没有房间的面积至少为 3 ,所以答案为 -1 。
查询 [5,2] :房间 3 的面积为 2 ,大于等于 2 ,且号码是最接近 5 的,为 abs(3 - 5) = 2 ,所以答案为 3 。

示例 2:

输入:rooms = [[1,4],[2,3],[3,5],[4,1],[5,2]], queries = [[2,3],[2,4],[2,5]]
输出:[2,1,3]
解释:查询的答案如下:
查询 [2,3] :房间 2 的面积为 3 ,大于等于 3 ,且号码是最接近的,为 abs(2 - 2) = 0 ,所以答案为 2 。
查询 [2,4] :房间 1 和 3 的面积都至少为 4 ,答案为 1 因为它房间编号更小。
查询 [2,5] :房间 3 是唯一面积大于等于 5 的,所以答案为 3 。

说明:

  • n == rooms.length
  • 1 <= n <= 10^5
  • k == queries.length
  • 1 <= k <= 10^4
  • 1 <= roomIdi, preferredj <= 10^7
  • 1 <= sizei, minSizej <= 10^7

思路

有一个数组 roomsrooms[i][0] 表示第 i 个房间编号,房间编号不重复,rooms[i][1] 表示第 i 个房间大小。有一个查询数组 queriesqueries[j][0] 表示第 j 个查询期望的房间编号queries[j][1] 表示第 j 个查询最小的房间大小。返回查询数组对应的结果数组,查询结果为房间编号,该房间的面积至少为 queries[j][1],且房间编号与 queries[j][0] 的距离最小,如果存在距离相等的情况,取房间编号最小的。

首先按房间大小排序,大小相同的按编号排序。对于每个查询首先二分查找出第一个大于 queries[j][1] 的房间在数组中的位置,接下来需要从该位置往后计算距离 queries[j][0] 最近的房间编号。

// todo 官网题解 Bentley Ottmann, Sparse Table 倍增 RMQ,Range Maximum/Minimum Query

代码


/**
 * @date 2024-12-16 16:23
 */
public class ClosestRoom1847 {

    public int[] closestRoom(int[][] rooms, int[][] queries) {
        Arrays.sort(rooms, (a, b) -> {
            int compare = a[1] - b[1];
            if (compare != 0) {
                return compare;
            }
            return a[0] - b[0];
        });
        int n = rooms.length;
        int k = queries.length;
        int[] res = new int[k];
        int i = 0;
        for (int[] query : queries) {
            int minAreaRoomIndex = lowerBound(rooms, 0, n - 1, query[1]);
            if (minAreaRoomIndex == n) {
                res[i++] = -1;
                continue;
            }
            int dist = Integer.MAX_VALUE;
            int roomId = Integer.MAX_VALUE;
            for (int j = minAreaRoomIndex; j < n; j++) {
                int tmp = Math.abs(query[0] - rooms[j][0]);
                if (tmp < dist) {
                    dist = tmp;
                    roomId = rooms[j][0];
                } else if (tmp == dist) {
                    roomId = Math.min(rooms[j][0], roomId);
                }
            }
            res[i++] = roomId;
        }

        return res;
    }

    public int lowerBound(int[][] rooms, int l, int r, int target) {
        int m = l + ((r - l) >> 1);
        while (l <= r) {
            if (rooms[m][1] >= target) {
                r = m - 1;
            } else {
                l = m + 1;
            }
            m = l + ((r - l) >> 1);
        }
        return l;
    }

}

性能

3235.判断矩形的两个角落是否可达

目标

给你两个正整数 xCorner 和 yCorner 和一个二维整数数组 circles ,其中 circles[i] = [xi, yi, ri] 表示一个圆心在 (xi, yi) 半径为 ri 的圆。

坐标平面内有一个左下角在原点,右上角在 (xCorner, yCorner) 的矩形。你需要判断是否存在一条从左下角到右上角的路径满足:路径 完全 在矩形内部,不会 触碰或者经过 任何 圆的内部和边界,同时 只 在起点和终点接触到矩形。

如果存在这样的路径,请你返回 true ,否则返回 false 。

示例 1:

输入:X = 3, Y = 4, circles = [[2,1,1]]
输出:true
解释:
黑色曲线表示一条从 (0, 0) 到 (3, 4) 的路径。

示例 2:

输入:X = 3, Y = 3, circles = [[1,1,2]]
输出:false
解释:
不存在从 (0, 0) 到 (3, 3) 的路径。

示例 3:

输入:X = 3, Y = 3, circles = [[2,1,1],[1,2,1]]
输出:false
解释:
不存在从 (0, 0) 到 (3, 3) 的路径。

示例 4:

输入:X = 4, Y = 4, circles = [[5,5,1]]
输出:true
解释:

说明:

  • 3 <= xCorner, yCorner <= 10^9
  • 1 <= circles.length <= 1000
  • circles[i].length == 3
  • 1 <= xi, yi, ri <= 10^9

思路

有一个以原点为左下顶点, [xCorner, yCorner] 为右上顶点的矩形,还有一些圆 circlescircles[i, j, r] 表示圆的圆心在 (i, j) 半径为 r。问是否存在一条从原点到 [xCorner, yCorner] 的路径,满足路径在矩形内部(不与矩形边界重合),且不触碰或经过任何园的内部与边界。

评论说这是史上分数最高的题目,周赛全球也没几个人做出来,直接放弃了。

代码

性能

638.大礼包

目标

在 LeetCode 商店中, 有 n 件在售的物品。每件物品都有对应的价格。然而,也有一些大礼包,每个大礼包以优惠的价格捆绑销售一组物品。

给你一个整数数组 price 表示物品价格,其中 price[i] 是第 i 件物品的价格。另有一个整数数组 needs 表示购物清单,其中 needs[i] 是需要购买第 i 件物品的数量。

还有一个数组 special 表示大礼包,special[i] 的长度为 n + 1 ,其中 special[i][j] 表示第 i 个大礼包中内含第 j 件物品的数量,且 special[i][n] (也就是数组中的最后一个整数)为第 i 个大礼包的价格。

返回 确切 满足购物清单所需花费的最低价格,你可以充分利用大礼包的优惠活动。你不能购买超出购物清单指定数量的物品,即使那样会降低整体价格。任意大礼包可无限次购买。

示例 1:

输入:price = [2,5], special = [[3,0,5],[1,2,10]], needs = [3,2]
输出:14
解释:有 A 和 B 两种物品,价格分别为 ¥2 和 ¥5 。 
大礼包 1 ,你可以以 ¥5 的价格购买 3A 和 0B 。 
大礼包 2 ,你可以以 ¥10 的价格购买 1A 和 2B 。 
需要购买 3 个 A 和 2 个 B , 所以付 ¥10 购买 1A 和 2B(大礼包 2),以及 ¥4 购买 2A 。

示例 2:

输入:price = [2,3,4], special = [[1,1,0,4],[2,2,1,9]], needs = [1,2,1]
输出:11
解释:A ,B ,C 的价格分别为 ¥2 ,¥3 ,¥4 。
可以用 ¥4 购买 1A 和 1B ,也可以用 ¥9 购买 2A ,2B 和 1C 。 
需要买 1A ,2B 和 1C ,所以付 ¥4 买 1A 和 1B(大礼包 1),以及 ¥3 购买 1B , ¥4 购买 1C 。 
不可以购买超出待购清单的物品,尽管购买大礼包 2 更加便宜。

说明:

  • n == price.length == needs.length
  • 1 <= n <= 6
  • 0 <= price[i], needs[i] <= 10
  • 1 <= special.length <= 100
  • special[i].length == n + 1
  • 0 <= special[i][j] <= 50
  • 生成的输入对于 0 <= j <= n - 1 至少有一个 special[i][j] 非零。

思路

有一个购物清单 needneed[i] 表示需要购买商品 i 的数量,price[i] 表示商品 i 的单价,此外还有一组大礼包 specialspecial[j][i] 表示大礼包 j 中包含的第 i 件商品的数量,并且 specal[j][n] 表示该大礼包的价格。求购买 need 清单中的商品最少花费多少钱,我们可以购买大礼包任意次,但是购买的总数量不能超过需求的数量,尽管可能价格更低。

完全背包问题是物品有无限个,背包容量有限,求能装下的最大价值/最小价值。如果将题目中的清单视为多个背包容量,单买物品 i,以及购买大礼包 j 中的商品 i 视为不同的商品,那么我们求的是装满所有背包的最小价值。问题在于,大礼包不光有商品 i,还有其它商品,如何处理?

网友题解将单买也看成大礼包,只不过其它商品数量为 0,这样可以统一处理大礼包。

// todo

代码

性能

3165.不包含相邻元素的子序列的最大和

目标

给你一个整数数组 nums 和一个二维数组 queries,其中 queries[i] = [posi, xi]。

对于每个查询 i,首先将 nums[posi] 设置为 xi,然后计算查询 i 的答案,该答案为 nums 中 不包含相邻元素 的 子序列 的 最大 和。

返回所有查询的答案之和。

由于最终答案可能非常大,返回其对 10^9 + 7 取余 的结果。

子序列 是指从另一个数组中删除一些或不删除元素而不改变剩余元素顺序得到的数组。

示例 1:

输入:nums = [3,5,9], queries = [[1,-2],[0,-3]]
输出:21
解释:
执行第 1 个查询后,nums = [3,-2,9],不包含相邻元素的子序列的最大和为 3 + 9 = 12。
执行第 2 个查询后,nums = [-3,-2,9],不包含相邻元素的子序列的最大和为 9 。

示例 2:

输入:nums = [0,-1], queries = [[0,-5]]
输出:0
解释:
执行第 1 个查询后,nums = [-5,-1],不包含相邻元素的子序列的最大和为 0(选择空子序列)。

说明:

  • 1 <= nums.length <= 5 * 10^4
  • -10^5 <= nums[i] <= 10^5
  • 1 <= queries.length <= 5 * 10^4
  • queries[i] == [posi, xi]
  • 0 <= posi <= nums.length - 1
  • -10^5 <= xi <= 10^5

思路

// todo

代码

性能

685.冗余连接II

目标

在本问题中,有根树指满足以下条件的 有向 图。该树只有一个根节点,所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节点都有且只有一个父节点,而根节点没有父节点。

输入一个有向图,该图由一个有着 n 个节点(节点值不重复,从 1 到 n)的树及一条附加的有向边构成。附加的边包含在 1 到 n 中的两个不同顶点间,这条附加的边不属于树中已存在的边。

结果图是一个以边组成的二维数组 edges 。 每个元素是一对 [ui, vi],用以表示 有向 图中连接顶点 ui 和顶点 vi 的边,其中 ui 是 vi 的一个父节点。

返回一条能删除的边,使得剩下的图是有 n 个节点的有根树。若有多个答案,返回最后出现在给定二维数组的答案。

示例 1:

输入:edges = [[1,2],[1,3],[2,3]]
输出:[2,3]

示例 2:

输入:edges = [[1,2],[2,3],[3,4],[4,1],[1,5]]
输出:[4,1]

说明:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ui, vi <= n

思路

有一颗 n 个节点的树,节点编号 1 ~ n。使用 edges 表示向树中两个没有直接连接的节点之间加一条边之后的边的集合,找出一条可以删除的边使得 edges 变为一颗有 n 个节点的树。如果有多种选择,返回 edges 中最后出现的那个,即下标最大的边。与 冗余连接 不同的是 edges有向边 的集合。

如果直接使用昨天无向图寻找环的做法会有两个问题:

  • 无法处理 a -> b, b -> a 的情况,因为在无向图中为了防止环,直接回避了这种情况
  • 并不是删去环上任意一条边都可以的,因为边是有向的,如果某个节点出现两个父节点,那么一定要删去以该节点为终点的边

官网题解使用的还是并查集。// todo

代码


/**
 * @date 2024-10-28 8:51
 */
public class FindRedundantDirectedConnection685 {

    List<Integer>[] g;
    Set<Integer> loop;
    List<Integer> path;
    int start;
    int end;

    public int[] findRedundantDirectedConnection(int[][] edges) {
        int n = edges.length;
        g = new List[n + 1];
        for (int i = 0; i <= n; i++) {
            g[i] = new ArrayList<>();
        }
        int[] degree = new int[n + 1];
        Set<Integer> e = new HashSet<>(n);
        int end = -1;
        int[] self = null;
        for (int[] edge : edges) {
            int from = edge[0];
            int to = edge[1];
            int fromto = from << 10 | to;
            int tofrom = to << 10 | from;
            if (e.contains(fromto)) {
                self = new int[]{from, to};
            }
            e.add(fromto);
            e.add(tofrom);
            g[from].add(to);
            g[to].add(from);
            if (degree[to] == 1) {
                end = to;
            } else {
                degree[to]++;
            }
        }

        if (self != null) {
            if (end == -1) {
                for (int i = n - 1; i >= 0; i--) {
                    if ((self[0] == edges[i][0] && edges[i][1] == self[1])
                            || (self[0] == edges[i][1] && edges[i][0] == self[1])) {
                        return edges[i];
                    }
                }
            } else {
                return new int[]{self[0] == end ? self[1] : self[0], end};
            }

        }

        loop = new HashSet<>(n);
        path = new ArrayList<>();
        loop.add(1);
        path.add(1);
        dfs(0, 1);
        loop = new HashSet<>();
        for (int i = path.size() - 1; i >= 0; i--) {
            loop.add(path.get(i));
            if (start == path.get(i)) {
                break;
            }
        }
        if (end == -1) {
            for (int i = n - 1; i >= 0; i--) {
                if (loop.contains(edges[i][0]) && loop.contains(edges[i][1])) {
                    return edges[i];
                }
            }
        } else {
            for (int i = n - 1; i >= 0; i--) {
                if (edges[i][1] == end && loop.contains(edges[i][0])) {
                    return edges[i];
                }
            }
        }

        return null;
    }

    private boolean dfs(int parent, int current) {
        for (Integer next : g[current]) {
            if (next == parent) {
                continue;
            }
            if (loop.contains(next)) {
                start = next;
                return true;
            } else {
                loop.add(next);
                path.add(next);
                if (dfs(current, next)) {
                    return true;
                }
                path.remove(path.size() - 1);
                loop.remove(next);
            }
        }
        return false;
    }

}

性能