2338.统计理想数组的数目

目标

给你两个整数 n 和 maxValue ,用于描述一个 理想数组 。

对于下标从 0 开始、长度为 n 的整数数组 arr ,如果满足以下条件,则认为该数组是一个 理想数组 :

  • 每个 arr[i] 都是从 1 到 maxValue 范围内的一个值,其中 0 <= i < n 。
  • 每个 arr[i] 都可以被 arr[i - 1] 整除,其中 0 < i < n 。

返回长度为 n 的 不同 理想数组的数目。由于答案可能很大,返回对 10^9 + 7 取余的结果。

示例 1:

输入:n = 2, maxValue = 5
输出:10
解释:存在以下理想数组:
- 以 1 开头的数组(5 个):[1,1]、[1,2]、[1,3]、[1,4]、[1,5]
- 以 2 开头的数组(2 个):[2,2]、[2,4]
- 以 3 开头的数组(1 个):[3,3]
- 以 4 开头的数组(1 个):[4,4]
- 以 5 开头的数组(1 个):[5,5]
共计 5 + 2 + 1 + 1 + 1 = 10 个不同理想数组。

示例 2:

输入:n = 5, maxValue = 3
输出:11
解释:存在以下理想数组:
- 以 1 开头的数组(9 个):
   - 不含其他不同值(1 个):[1,1,1,1,1] 
   - 含一个不同值 2(4 个):[1,1,1,1,2], [1,1,1,2,2], [1,1,2,2,2], [1,2,2,2,2]
   - 含一个不同值 3(4 个):[1,1,1,1,3], [1,1,1,3,3], [1,1,3,3,3], [1,3,3,3,3]
- 以 2 开头的数组(1 个):[2,2,2,2,2]
- 以 3 开头的数组(1 个):[3,3,3,3,3]
共计 9 + 1 + 1 = 11 个不同理想数组。

说明:

  • 2 <= n <= 10^4
  • 1 <= maxValue <= 10^4

思路

//todo

代码

性能

2179.统计数组中好三元组数目

目标

给你两个下标从 0 开始且长度为 n 的整数数组 nums1 和 nums2 ,两者都是 [0, 1, ..., n - 1] 的 排列 。

好三元组 指的是 3 个 互不相同 的值,且它们在数组 nums1 和 nums2 中出现顺序保持一致。换句话说,如果我们将 pos1v 记为值 v 在 nums1 中出现的位置,pos2v 为值 v 在 nums2 中的位置,那么一个好三元组定义为 0 <= x, y, z <= n - 1 ,且 pos1x < pos1y < pos1z 和 pos2x < pos2y < pos2z 都成立的 (x, y, z) 。

请你返回好三元组的 总数目 。

示例 1:

输入:nums1 = [2,0,1,3], nums2 = [0,1,2,3]
输出:1
解释:
总共有 4 个三元组 (x,y,z) 满足 pos1x < pos1y < pos1z ,分别是 (2,0,1) ,(2,0,3) ,(2,1,3) 和 (0,1,3) 。
这些三元组中,只有 (0,1,3) 满足 pos2x < pos2y < pos2z 。所以只有 1 个好三元组。

示例 2:

输入:nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3]
输出:4
解释:总共有 4 个好三元组 (4,0,3) ,(4,0,2) ,(4,1,3) 和 (4,1,2) 。

说明:

  • n == nums1.length == nums2.length
  • 3 <= n <= 10^5
  • 0 <= nums1[i], nums2[i] <= n - 1
  • nums1 和 nums2 是 [0, 1, ..., n - 1] 的排列。

提示:

  • For every value y, how can you find the number of values x (0 ≤ x, y ≤ n - 1) such that x appears before y in both of the arrays?
  • Similarly, for every value y, try finding the number of values z (0 ≤ y, z ≤ n - 1) such that z appears after y in both of the arrays.
  • Now, for every value y, count the number of good triplets that can be formed if y is considered as the middle element.

思路

有两个 0 ~ n - 1 的排列,好三元组指这两个排列的公共子序列,求好三元组的总数目。

// todo

代码

性能

368.最大整除子集

目标

给你一个由 无重复 正整数组成的集合 nums ,请你找出并返回其中最大的整除子集 answer ,子集中每一元素对 (answer[i], answer[j]) 都应当满足:

  • answer[i] % answer[j] == 0 ,或
  • answer[j] % answer[i] == 0

如果存在多个有效解子集,返回其中任何一个均可。

示例 1:

输入:nums = [1,2,3]
输出:[1,2]
解释:[1,3] 也会被视为正确答案。

示例 2:

输入:nums = [1,2,4,8]
输出:[1,2,4,8]

说明:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 2 * 10^9
  • nums 中的所有整数 互不相同

思路

// todo

代码

性能

2140.解决智力问题

目标

给你一个下标从 0 开始的二维整数数组 questions ,其中 questions[i] = [pointsi, brainpoweri] 。

这个数组表示一场考试里的一系列题目,你需要 按顺序 (也就是从问题 0 开始依次解决),针对每个问题选择 解决 或者 跳过 操作。解决问题 i 将让你 获得 pointsi 的分数,但是你将 无法 解决接下来的 brainpoweri 个问题(即只能跳过接下来的 brainpoweri 个问题)。如果你跳过问题 i ,你可以对下一个问题决定使用哪种操作。

比方说,给你 questions = [[3, 2], [4, 3], [4, 4], [2, 5]] :

  • 如果问题 0 被解决了, 那么你可以获得 3 分,但你不能解决问题 1 和 2 。
  • 如果你跳过问题 0 ,且解决问题 1 ,你将获得 4 分但是不能解决问题 2 和 3 。

请你返回这场考试里你能获得的 最高 分数。

示例 1:

输入:questions = [[3,2],[4,3],[4,4],[2,5]]
输出:5
解释:解决问题 0 和 3 得到最高分。
- 解决问题 0 :获得 3 分,但接下来 2 个问题都不能解决。
- 不能解决问题 1 和 2
- 解决问题 3 :获得 2 分
总得分为:3 + 2 = 5 。没有别的办法获得 5 分或者多于 5 分。

示例 2:

输入:questions = [[1,1],[2,2],[3,3],[4,4],[5,5]]
输出:7
解释:解决问题 1 和 4 得到最高分。
- 跳过问题 0
- 解决问题 1 :获得 2 分,但接下来 2 个问题都不能解决。
- 不能解决问题 2 和 3
- 解决问题 4 :获得 5 分
总得分为:2 + 5 = 7 。没有别的办法获得 7 分或者多于 7 分。

说明:

  • 1 <= questions.length <= 10^5
  • questions[i].length == 2
  • 1 <= pointsi, brainpoweri <= 10^5

思路

有一个二维数组 questions 表示一场考试里的一系列题目,questions[i][0] 表示解决第 i 题能获得的分数,questions[i][1] 表示解决该题需要消耗的脑力,即解决了第 i 题后,i 后面的 questions[i][1] 个题目都无法解决。返回在该场考试所能获得的最高分。

这个题有许多值得思考的地方,有空整理一下。//todo

代码


/**
 * @date 2025-04-01 8:47
 */
public class MostPoints2140 {

    public long mostPoints(int[][] questions) {
        int n = questions.length;
        long[] dp = new long[n + 1];
        for (int i = n - 1; i >= 0; i--) {
            int j = Math.min(i + questions[i][1] + 1, n);
            dp[i] = Math.max(dp[i + 1], dp[j] + questions[i][0]);
        }
        return dp[0];
    }

}

性能

2360.图中的最长环

目标

给你一个 n 个节点的 有向图 ,节点编号为 0 到 n - 1 ,其中每个节点 至多 有一条出边。

图用一个大小为 n 下标从 0 开始的数组 edges 表示,节点 i 到节点 edges[i] 之间有一条有向边。如果节点 i 没有出边,那么 edges[i] == -1 。

请你返回图中的 最长 环,如果没有任何环,请返回 -1 。

一个环指的是起点和终点是 同一个 节点的路径。

示例 1:

输入:edges = [3,3,4,2,3]
输出去:3
解释:图中的最长环是:2 -> 4 -> 3 -> 2 。
这个环的长度为 3 ,所以返回 3 。

示例 2:

输入:edges = [2,-1,3,1]
输出:-1
解释:图中没有任何环。

说明:

  • n == edges.length
  • 2 <= n <= 10^5
  • -1 <= edges[i] < n
  • edges[i] != i

思路

//todo

代码

性能

2612.最少翻转操作数

目标

给你一个整数 n 和一个在范围 [0, n - 1] 以内的整数 p ,它们表示一个长度为 n 且下标从 0 开始的数组 arr ,数组中除了下标为 p 处是 1 以外,其他所有数都是 0 。

同时给你一个整数数组 banned ,它包含数组中的一些位置。banned 中第 i 个位置表示 arr[banned[i]] = 0 ,题目保证 banned[i] != p 。

你可以对 arr 进行 若干次 操作。一次操作中,你选择大小为 k 的一个 子数组 ,并将它 翻转 。在任何一次翻转操作后,你都需要确保 arr 中唯一的 1 不会到达任何 banned 中的位置。换句话说,arr[banned[i]] 始终 保持 0 。

请你返回一个数组 ans ,对于 [0, n - 1] 之间的任意下标 i ,ans[i] 是将 1 放到位置 i 处的 最少 翻转操作次数,如果无法放到位置 i 处,此数为 -1 。

  • 子数组 指的是一个数组里一段连续 非空 的元素序列。
  • 对于所有的 i ,ans[i] 相互之间独立计算。
  • 将一个数组中的元素 翻转 指的是将数组中的值变成 相反顺序 。

示例 1:

输入:n = 4, p = 0, banned = [1,2], k = 4
输出:[0,-1,-1,1]
解释:k = 4,所以只有一种可行的翻转操作,就是将整个数组翻转。一开始 1 在位置 0 处,所以将它翻转到位置 0 处需要的操作数为 0 。
我们不能将 1 翻转到 banned 中的位置,所以位置 1 和 2 处的答案都是 -1 。
通过一次翻转操作,可以将 1 放到位置 3 处,所以位置 3 的答案是 1 。

示例 2:

输入:n = 5, p = 0, banned = [2,4], k = 3
输出:[0,-1,-1,-1,-1]
解释:这个例子中 1 一开始在位置 0 处,所以此下标的答案为 0 。
翻转的子数组长度为 k = 3 ,1 此时在位置 0 处,所以我们可以翻转子数组 [0, 2],但翻转后的下标 2 在 banned 中,所以不能执行此操作。
由于 1 没法离开位置 0 ,所以其他位置的答案都是 -1 。

示例 3:

输入:n = 4, p = 2, banned = [0,1,3], k = 1
输出:[-1,-1,0,-1]
解释:这个例子中,我们只能对长度为 1 的子数组执行翻转操作,所以 1 无法离开初始位置。

说明:

  • 1 <= n <= 10^5
  • 0 <= p <= n - 1
  • 0 <= banned.length <= n - 1
  • 0 <= banned[i] <= n - 1
  • 1 <= k <= n
  • banned[i] != p
  • banned 中的值 互不相同 。

思路

// todo

代码

性能

2272.最大波动的子字符串

目标

字符串的 波动 定义为子字符串中出现次数 最多 的字符次数与出现次数 最少 的字符次数之差。

给你一个字符串 s ,它只包含小写英文字母。请你返回 s 里所有 子字符串的 最大波动 值。

子字符串 是一个字符串的一段连续字符序列。

示例 1:

输入:s = "aababbb"
输出:3
解释:
所有可能的波动值和它们对应的子字符串如以下所示:
- 波动值为 0 的子字符串:"a" ,"aa" ,"ab" ,"abab" ,"aababb" ,"ba" ,"b" ,"bb" 和 "bbb" 。
- 波动值为 1 的子字符串:"aab" ,"aba" ,"abb" ,"aabab" ,"ababb" ,"aababbb" 和 "bab" 。
- 波动值为 2 的子字符串:"aaba" ,"ababbb" ,"abbb" 和 "babb" 。
- 波动值为 3 的子字符串 "babbb" 。
所以,最大可能波动值为 3 。

示例 2:

输入:s = "abcde"
输出:0
解释:
s 中没有字母出现超过 1 次,所以 s 中每个子字符串的波动值都是 0 。

说明:

  • 1 <= s.length <= 10^4
  • s 只包含小写英文字母。

思路

//todo

代码

性能

2502.设计内存分配器

目标

给你一个整数 n ,表示下标从 0 开始的内存数组的大小。所有内存单元开始都是空闲的。

请你设计一个具备以下功能的内存分配器:

  1. 分配 一块大小为 size 的连续空闲内存单元并赋 id mID 。
  2. 释放 给定 id mID 对应的所有内存单元。

注意:

  • 多个块可以被分配到同一个 mID 。
  • 你必须释放 mID 对应的所有内存单元,即便这些内存单元被分配在不同的块中。

实现 Allocator 类:

  • Allocator(int n) 使用一个大小为 n 的内存数组初始化 Allocator 对象。
  • int allocate(int size, int mID) 找出大小为 size 个连续空闲内存单元且位于 最左侧 的块,分配并赋 id mID 。返回块的第一个下标。如果不存在这样的块,返回 -1 。
  • int freeMemory(int mID) 释放 id mID 对应的所有内存单元。返回释放的内存单元数目。

示例:

输入
["Allocator", "allocate", "allocate", "allocate", "freeMemory", "allocate", "allocate", "allocate", "freeMemory", "allocate", "freeMemory"]
[[10], [1, 1], [1, 2], [1, 3], [2], [3, 4], [1, 1], [1, 1], [1], [10, 2], [7]]
输出
[null, 0, 1, 2, 1, 3, 1, 6, 3, -1, 0]

解释
Allocator loc = new Allocator(10); // 初始化一个大小为 10 的内存数组,所有内存单元都是空闲的。
loc.allocate(1, 1); // 最左侧的块的第一个下标是 0 。内存数组变为 [1, , , , , , , , , ]。返回 0 。
loc.allocate(1, 2); // 最左侧的块的第一个下标是 1 。内存数组变为 [1,2, , , , , , , , ]。返回 1 。
loc.allocate(1, 3); // 最左侧的块的第一个下标是 2 。内存数组变为 [1,2,3, , , , , , , ]。返回 2 。
loc.freeMemory(2); // 释放 mID 为 2 的所有内存单元。内存数组变为 [1, ,3, , , , , , , ] 。返回 1 ,因为只有 1 个 mID 为 2 的内存单元。
loc.allocate(3, 4); // 最左侧的块的第一个下标是 3 。内存数组变为 [1, ,3,4,4,4, , , , ]。返回 3 。
loc.allocate(1, 1); // 最左侧的块的第一个下标是 1 。内存数组变为 [1,1,3,4,4,4, , , , ]。返回 1 。
loc.allocate(1, 1); // 最左侧的块的第一个下标是 6 。内存数组变为 [1,1,3,4,4,4,1, , , ]。返回 6 。
loc.freeMemory(1); // 释放 mID 为 1 的所有内存单元。内存数组变为 [ , ,3,4,4,4, , , , ] 。返回 3 ,因为有 3 个 mID 为 1 的内存单元。
loc.allocate(10, 2); // 无法找出长度为 10 个连续空闲内存单元的空闲块,所有返回 -1 。
loc.freeMemory(7); // 释放 mID 为 7 的所有内存单元。内存数组保持原状,因为不存在 mID 为 7 的内存单元。返回 0 。

说明:

  • 1 <= n, size, mID <= 1000
  • 最多调用 allocate 和 free 方法 1000 次

提示:

  • Can you simulate the process?
  • Use brute force to find the leftmost free block and free each occupied memory unit

思路

设计一个内存分配器来管理大小为 n 的内存数组,要求实现初始化、分配与释放方法。内存分配方法返回大小为 size 的连续空闲内存的最左侧下标,并为这些内存分配标识 mID。内存释放则是释放 mID 的所有内存单元。

有网友使用链表来维护空间的分配状态,定义节点属性:起点、大小、是否已分配、下一个节点、mID。分配空间时挨个查找,释放空间类似。使用节点对象表示区间,空间合并起来比较方便。

提示说可以使用暴力解法,暴力解的时间复杂度为 O(qn)

// todo 线段树

代码


/**
 * @date 2025-02-25 10:03
 */
class Allocator {

    private int[] flag;
    private int n;

    public Allocator(int n) {
        this.flag = new int[n];
        this.n = n;
    }

    public int allocate(int size, int mID) {
        int cnt = 0;
        for (int i = 0; i < n; i++) {
            if (flag[i] != 0) {
                cnt = 0;
                continue;
            } else {
                cnt++;
            }
            if (cnt == size) {
                int start = i - size + 1;
                for (; i >= start; i--) {
                    flag[i] = mID;
                }
                return start;
            }
        }
        return -1;
    }

    public int freeMemory(int mID) {
        int cnt = 0;
        for (int i = 0; i < n; i++) {
            if (flag[i] == mID) {
                flag[i] = 0;
                cnt++;
            }
        }
        return cnt;
    }
}

性能

1206.设计跳表

目标

不使用任何库函数,设计一个 跳表 。

跳表 是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。

例如,一个跳表包含 [30, 40, 50, 60, 70, 90] ,然后增加 80、45 到跳表中,以下图的方式操作:

跳表中有很多层,每一层是一个短的链表。在第一层的作用下,增加、删除和搜索操作的时间复杂度不超过 O(n)。跳表的每一个操作的平均时间复杂度是 O(log(n)),空间复杂度是 O(n)。

了解更多 : https://oi-wiki.org/ds/skiplist/

在本题中,你的设计应该要包含这些函数:

  • bool search(int target) : 返回target是否存在于跳表中。
  • void add(int num): 插入一个元素到跳表。
  • bool erase(int num): 在跳表中删除一个值,如果 num 不存在,直接返回false. 如果存在多个 num ,删除其中任意一个即可。

注意,跳表中可能存在多个相同的值,你的代码需要处理这种情况。

示例 1:

输入
["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"]
[[], [1], [2], [3], [0], [4], [1], [0], [1], [1]]
输出
[null, null, null, null, false, null, true, false, true, false]

解释
Skiplist skiplist = new Skiplist();
skiplist.add(1);
skiplist.add(2);
skiplist.add(3);
skiplist.search(0);   // 返回 false
skiplist.add(4);
skiplist.search(1);   // 返回 true
skiplist.erase(0);    // 返回 false,0 不在跳表中
skiplist.erase(1);    // 返回 true
skiplist.search(1);   // 返回 false,1 已被擦除

说明:

  • 0 <= num, target <= 2 * 10^4
  • 调用search, add, erase操作次数不大于 5 * 10^4

思路

// todo

代码

性能

2209.用地毯覆盖后的最少白色砖块

目标

给你一个下标从 0 开始的 二进制 字符串 floor ,它表示地板上砖块的颜色。

  • floor[i] = '0' 表示地板上第 i 块砖块的颜色是 黑色 。
  • floor[i] = '1' 表示地板上第 i 块砖块的颜色是 白色 。

同时给你 numCarpets 和 carpetLen 。你有 numCarpets 条 黑色 的地毯,每一条 黑色 的地毯长度都为 carpetLen 块砖块。请你使用这些地毯去覆盖砖块,使得未被覆盖的剩余 白色 砖块的数目 最小 。地毯相互之间可以覆盖。

请你返回没被覆盖的白色砖块的 最少 数目。

示例 1:

输入:floor = "10110101", numCarpets = 2, carpetLen = 2
输出:2
解释:
上图展示了剩余 2 块白色砖块的方案。
没有其他方案可以使未被覆盖的白色砖块少于 2 块。

示例 2:

输入:floor = "11111", numCarpets = 2, carpetLen = 3
输出:0
解释:
上图展示了所有白色砖块都被覆盖的一种方案。
注意,地毯相互之间可以覆盖。

说明:

  • 1 <= carpetLen <= floor.length <= 1000
  • floor[i] 要么是 '0' ,要么是 '1' 。
  • 1 <= numCarpets <= 1000

思路

floor.length 块一字排列的砖,floor[i] 的值表示砖的颜色,0 代表黑色,1 代表白色。另有 numCarpets 条长度为 carpetLen 的地毯。求使用地毯覆盖砖块剩余 白色 砖块的最小数目。

假设白色砖块有 k 个,那么可行的方案数有 C(k, numCarpets) 种,即选 k 块白砖为起点覆盖地毯。

//todo

代码

性能