2054.两个最好的不重叠活动

目标

给你一个下标从 0 开始的二维整数数组 events ,其中 events[i] = [startTimei, endTimei, valuei] 。第 i 个活动开始于 startTimei ,结束于 endTimei ,如果你参加这个活动,那么你可以得到价值 valuei 。你 最多 可以参加 两个时间不重叠 活动,使得它们的价值之和 最大 。

请你返回价值之和的 最大值 。

注意,活动的开始时间和结束时间是 包括 在活动时间内的,也就是说,你不能参加两个活动且它们之一的开始时间等于另一个活动的结束时间。更具体的,如果你参加一个活动,且结束时间为 t ,那么下一个活动必须在 t + 1 或之后的时间开始。

示例 1:

输入:events = [[1,3,2],[4,5,2],[2,4,3]]
输出:4
解释:选择绿色的活动 0 和 1 ,价值之和为 2 + 2 = 4 。

示例 2:

输入:events = [[1,3,2],[4,5,2],[1,5,5]]
输出:5
解释:选择活动 2 ,价值和为 5 。

示例 3:

输入:events = [[1,5,3],[1,5,1],[6,6,5]]
输出:8
解释:选择活动 0 和 2 ,价值之和为 3 + 5 = 8 。

说明:

  • 2 <= events.length <= 10^5
  • events[i].length == 3
  • 1 <= startTimei <= endTimei <= 10^9
  • 1 <= valuei <= 10^6

思路

有一个二维数组 eventsevents[i] 表示事件 i 的 (开始时间,结束时间,价值) 三元组,至多参加两个活动,这两个活动不能重叠 (结束时间与开始时间也不能重叠),求参加活动的最大价值。

根据开始时间排序,二分查找第一个大于结束时间的下标,维护后缀最大值。

代码


/**
 * @date 2025-12-23 8:53
 */
public class MaxTwoEvents2054 {

    public int maxTwoEvents(int[][] events) {
        Arrays.sort(events, (a, b) -> a[0] - b[0]);
        int res = 0;
        int n = events.length;
        int[] suffix = new int[n + 1];
        for (int i = n - 1; i >= 0; i--) {
            suffix[i] = Math.max(suffix[i + 1], events[i][2]);
        }
        for (int[] event : events) {
            int index = bs(events, event[1]);
            res = Math.max(res, event[2] + suffix[index]);
        }
        return res;
    }

    public int bs(int[][] events, int target) {
        int l = 0;
        int r = events.length - 1;
        int m = l + (r - l) / 2;
        while (l <= r) {
            if (events[m][0] <= target) {
                l = m + 1;
            } else {
                r = m - 1;
            }
            m = l + (r - l) / 2;
        }
        return l;
    }

}

性能

955.删列造序II

目标

给定由 n 个字符串组成的数组 strs,其中每个字符串长度相等。

选取一个删除索引序列,对于 strs 中的每个字符串,删除对应每个索引处的字符。

比如,有 strs = ["abcdef", "uvwxyz"],删除索引序列 {0, 2, 3},删除后 strs 为["bef", "vyz"]。

假设,我们选择了一组删除索引 answer,那么在执行删除操作之后,最终得到的数组的元素是按 字典序(strs[0] <= strs[1] <= strs[2] ... <= strs[n - 1])排列的,然后请你返回 answer.length 的最小可能值。

示例 1:

输入:strs = ["ca","bb","ac"]
输出:1
解释: 
删除第一列后,strs = ["a", "b", "c"]。
现在 strs 中元素是按字典排列的 (即,strs[0] <= strs[1] <= strs[2])。
我们至少需要进行 1 次删除,因为最初 strs 不是按字典序排列的,所以答案是 1。

示例 2:

输入:strs = ["xc","yb","za"]
输出:0
解释:
strs 的列已经是按字典序排列了,所以我们不需要删除任何东西。
注意 strs 的行不需要按字典序排列。
也就是说,strs[0][0] <= strs[0][1] <= ... 不一定成立。

示例 3:

输入:strs = ["zyx","wvu","tsr"]
输出:3
解释:
我们必须删掉每一列。

说明:

  • n == strs.length
  • 1 <= n <= 100
  • 1 <= strs[i].length <= 100
  • strs[i] 由小写英文字母组成

思路

有一个元素长度相同的字符串数组 strs,通过删除列使得字符串元素按字典序非严格递增,返回删除的最少列数。

首先如果按列不是非严格递增的,那么一定要删除该列。然后,如果是非严格递增的,需要继续考查相同行后续列的字典序。

维护同一列中相同字母的行标列表 sameList,初始时包括所有行,如果需要删除就直接进入下一列循环,否则遍历 sameList 判断是否是升序(相同的字母组内比较),同时记录当前列相同的行标,如果 sameList 列表为空则退出。

代码


/**
 * @date 2025-12-21 19:24
 */
public class MinDeletionSize955 {

    public int minDeletionSize(String[] strs) {
        int n = strs.length;
        int m = strs[0].length();
        List<Integer> indexList = new ArrayList<>(n);
        for (int i = 0; i < n - 1; i++) {
            indexList.add(i);
        }
        int res = 0;
        here:
        for (int i = 0; i < m; i++) {
            if (indexList.size() == 0) {
                break;
            }
            List<Integer> tmp = new ArrayList<>();
            for (Integer k : indexList) {
                char cur = strs[k].charAt(i);
                char next = strs[k + 1].charAt(i);
                if (cur > next) {
                    res++;
                    continue here;
                } else if (cur == next) {
                    tmp.add(k);
                }
            }
            indexList = tmp;
        }
        return res;
    }

}

性能

3652.按策略买卖股票的最佳时机

目标

给你两个整数数组 prices 和 strategy,其中:

  • prices[i] 表示第 i 天某股票的价格。
  • strategy[i] 表示第 i 天的交易策略,其中:
    • -1 表示买入一单位股票。
    • 0 表示持有股票。
    • 1 表示卖出一单位股票。

同时给你一个 偶数 整数 k,你可以对 strategy 进行 最多一次 修改。一次修改包括:

  • 选择 strategy 中恰好 k 个 连续 元素。
  • 将前 k / 2 个元素设为 0(持有)。
  • 将后 k / 2 个元素设为 1(卖出)。

利润 定义为所有天数中 strategy[i] * prices[i] 的 总和 。

返回你可以获得的 最大 可能利润。

注意: 没有预算或股票持有数量的限制,因此所有买入和卖出操作均可行,无需考虑过去的操作。

示例 1:

输入: prices = [4,2,8], strategy = [-1,0,1], k = 2
输出: 10
解释:
修改 策略 利润计算 利润
原始 [-1, 0, 1] (-1 × 4) + (0 × 2) + (1 × 8) = -4 + 0 + 8 4
修改 [0, 1] [0, 1, 1] (0 × 4) + (1 × 2) + (1 × 8) = 0 + 2 + 8 10
修改 [1, 2] [-1, 0, 1] (-1 × 4) + (0 × 2) + (1 × 8) = -4 + 0 + 8 4
因此,最大可能利润是 10,通过修改子数组 [0, 1] 实现。

示例 2:

输入: prices = [5,4,3], strategy = [1,1,0], k = 2
输出: 9
解释:
修改 策略 利润计算 利润
原始 [1, 1, 0] (1 × 5) + (1 × 4) + (0 × 3) = 5 + 4 + 0 9
修改 [0, 1] [0, 1, 0] (0 × 5) + (1 × 4) + (0 × 3) = 0 + 4 + 0 4
修改 [1, 2] [1, 0, 1] (1 × 5) + (0 × 4) + (1 × 3) = 5 + 0 + 3 8
因此,最大可能利润是 9,无需任何修改即可达成。

说明:

  • 2 <= prices.length == strategy.length <= 10^5
  • 1 <= prices[i] <= 10^5
  • -1 <= strategy[i] <= 1
  • 2 <= k <= prices.length
  • k 是偶数

思路

定长滑动窗口,考虑窗口内现利润与原利润差值的最大值。维护窗口中间下标,调整后的利润从中间下标移出。使用一个变量记录窗口左端点原利润的前缀,另一个变量记录右端点的原利润前缀,相减可得窗口的原利润。原利润是根据策略累加,现利润是根据价格累加。

代码


/**
 * @date 2025-12-18 8:58
 */
public class MaxProfit3652 {

    public long maxProfit(int[] prices, int[] strategy, int k) {
        int n = prices.length;
        long cur = 0L, sum = 0L;
        for (int r = 0; r < k / 2; r++) {
            sum += prices[r] * strategy[r];
        }
        for (int r = k / 2; r < k; r++) {
            sum += prices[r] * strategy[r];
            cur += prices[r];
        }
        long diff = cur - sum;
        long prefix = 0L;
        int l = 0, m = k / 2;
        for (int r = k; r < n; r++) {
            sum += prices[r] * strategy[r];
            cur += prices[r] - prices[m++];
            prefix += prices[l] * strategy[l];
            l++;
            diff = Math.max(diff, cur - sum + prefix);
        }
        return sum + Math.max(0, diff);
    }

}

性能

3573.买卖股票的最佳时机V

目标

给你一个整数数组 prices,其中 prices[i] 是第 i 天股票的价格(美元),以及一个整数 k。

你最多可以进行 k 笔交易,每笔交易可以是以下任一类型:

  • 普通交易:在第 i 天买入,然后在之后的第 j 天卖出,其中 i < j。你的利润是 prices[j] - prices[i]。
  • 做空交易:在第 i 天卖出,然后在之后的第 j 天买回,其中 i < j。你的利润是 prices[i] - prices[j]。

注意:你必须在开始下一笔交易之前完成当前交易。此外,你不能在已经进行买入或卖出操作的同一天再次进行买入或卖出操作。

通过进行 最多 k 笔交易,返回你可以获得的最大总利润。

示例 1:

输入: prices = [1,7,9,8,2], k = 2
输出: 14
解释:
我们可以通过 2 笔交易获得 14 美元的利润:
一笔普通交易:第 0 天以 1 美元买入,第 2 天以 9 美元卖出。
一笔做空交易:第 3 天以 8 美元卖出,第 4 天以 2 美元买回。

示例 2:

输入: prices = [12,16,19,19,8,1,19,13,9], k = 3
输出: 36
解释:
我们可以通过 3 笔交易获得 36 美元的利润:
一笔普通交易:第 0 天以 12 美元买入,第 2 天以 19 美元卖出。
一笔做空交易:第 3 天以 19 美元卖出,第 4 天以 8 美元买回。
一笔普通交易:第 5 天以 1 美元买入,第 6 天以 19 美元卖出。

说明:

  • 2 <= prices.length <= 10^3
  • 1 <= prices[i] <= 10^9
  • 1 <= k <= prices.length / 2

思路

代码

性能

2110.股票平滑下跌阶段的数目

目标

给你一个整数数组 prices ,表示一支股票的历史每日股价,其中 prices[i] 是这支股票第 i 天的价格。

一个 平滑下降的阶段 定义为:对于 连续一天或者多天 ,每日股价都比 前一日股价恰好少 1 ,这个阶段第一天的股价没有限制。

请你返回 平滑下降阶段 的数目。

示例 1:

输入:prices = [3,2,1,4]
输出:7
解释:总共有 7 个平滑下降阶段:
[3], [2], [1], [4], [3,2], [2,1] 和 [3,2,1]
注意,仅一天按照定义也是平滑下降阶段。

示例 2:

输入:prices = [8,6,7,7]
输出:4
解释:总共有 4 个连续平滑下降阶段:[8], [6], [7] 和 [7]
由于 8 - 6 ≠ 1 ,所以 [8,6] 不是平滑下降阶段。

示例 3:

输入:prices = [1]
输出:1
解释:总共有 1 个平滑下降阶段:[1]

说明:

  • 1 <= prices.length <= 10^5
  • 1 <= prices[i] <= 10^5

思路

求满足要求的子数组个数,要求子数组严格单调递减且相邻元素差为 1

枚举右端点 r,假设满足条件的最小的左端点为 l,那么以 r 为右端点且满足条件的子数组个数为 r - l + 1。对于每一个 r,无需重复判断最小的 l,它可以从前一个状态转移过来,即如果 prices[r - 1] - prices[r] == 1 那么 l 仍是以 r - 1 为右端点且满足条件的最小左端点,否则 l = r

代码


/**
 * @date 2025-12-15 9:10
 */
public class GetDescentPeriods2110 {

    public long getDescentPeriods(int[] prices) {
        long res = 0L;
        int l = 0;
        int n = prices.length;
        int prev = prices[0] + 1;
        for (int r = 0; r < n; r++) {
            if (prev - prices[r] != 1){
                l = r;
            }
            res += r - l + 1;
            prev = prices[r];
        }
        return res;
    }
}

性能

3433.统计用户被提及情况

目标

给你一个整数 numberOfUsers 表示用户总数,另有一个大小为 n x 3 的数组 events 。

每个 events[i] 都属于下述两种类型之一:

  1. 消息事件(Message Event):["MESSAGE", "timestampi", "mentions_stringi"]

    • 事件表示在 timestampi 时,一组用户被消息提及。
    • mentions_stringi 字符串包含下述标识符之一:
      • id:其中 是一个区间 [0,numberOfUsers - 1] 内的整数。可以用单个空格分隔 多个 id ,并且 id 可能重复。此外,这种形式可以提及离线用户。
      • ALL:提及 所有 用户。
      • HERE:提及所有 在线 用户。
  2. 离线事件(Offline Event):["OFFLINE", "timestampi", "idi"]

    • 事件表示用户 idi 在 timestampi 时变为离线状态 60 个单位时间。用户会在 timestampi + 60 时自动再次上线。

返回数组 mentions ,其中 mentions[i] 表示 id 为 i 的用户在所有 MESSAGE 事件中被提及的次数。

最初所有用户都处于在线状态,并且如果某个用户离线或者重新上线,其对应的状态变更将会在所有相同时间发生的消息事件之前进行处理和同步。

注意 在单条消息中,同一个用户可能会被提及多次。每次提及都需要被 分别 统计。

示例 1:

输入:numberOfUsers = 2, events = [["MESSAGE","10","id1 id0"],["OFFLINE","11","0"],["MESSAGE","71","HERE"]]
输出:[2,2]
解释:
最初,所有用户都在线。
时间戳 10 ,id1 和 id0 被提及,mentions = [1,1]
时间戳 11 ,id0 离线 。
时间戳 71 ,id0 再次 上线 并且 "HERE" 被提及,mentions = [2,2]

示例 2:

输入:numberOfUsers = 2, events = [["MESSAGE","10","id1 id0"],["OFFLINE","11","0"],["MESSAGE","12","ALL"]]
输出:[2,2]
解释:
最初,所有用户都在线。
时间戳 10 ,id1 和 id0 被提及,mentions = [1,1]
时间戳 11 ,id0 离线 。
时间戳 12 ,"ALL" 被提及。这种方式将会包括所有离线用户,所以 id0 和 id1 都被提及,mentions = [2,2]

示例 3:

输入:numberOfUsers = 2, events = [["OFFLINE","10","0"],["MESSAGE","12","HERE"]]
输出:[0,1]
解释:
最初,所有用户都在线。
时间戳 10 ,id0 离线 。
时间戳 12 ,"HERE" 被提及。由于 id0 仍处于离线状态,其将不会被提及,mentions = [0,1]

说明:

  • 1 <= numberOfUsers <= 100
  • 1 <= events.length <= 100
  • events[i].length == 3
  • events[i][0] 的值为 MESSAGE 或 OFFLINE 。
  • 1 <= int(events[i][1]) <= 105
  • 在任意 "MESSAGE" 事件中,以 id 形式提及的用户数目介于 1 和 100 之间。
  • 0 <= <= numberOfUsers - 1
  • 题目保证 OFFLINE 引用的用户 id 在事件发生时处于 在线 状态。

思路

代码

性能

3531.统计被覆盖的建筑

目标

给你一个正整数 n,表示一个 n x n 的城市,同时给定一个二维数组 buildings,其中 buildings[i] = [x, y] 表示位于坐标 [x, y] 的一个 唯一 建筑。

如果一个建筑在四个方向(左、右、上、下)中每个方向上都至少存在一个建筑,则称该建筑 被覆盖 。

返回 被覆盖 的建筑数量。

示例 1:

输入: n = 3, buildings = [[1,2],[2,2],[3,2],[2,1],[2,3]]
输出: 1
解释:
只有建筑 [2,2] 被覆盖,因为它在每个方向上都至少存在一个建筑:
上方 ([1,2])
下方 ([3,2])
左方 ([2,1])
右方 ([2,3])
因此,被覆盖的建筑数量是 1。

示例 2:

输入: n = 3, buildings = [[1,1],[1,2],[2,1],[2,2]]
输出: 0
解释:
没有任何一个建筑在每个方向上都有至少一个建筑。

示例 3:

输入: n = 5, buildings = [[1,3],[3,2],[3,3],[3,5],[5,3]]
输出: 1
解释:
只有建筑 [3,3] 被覆盖,因为它在每个方向上至少存在一个建筑:
上方 ([1,3])
下方 ([5,3])
左方 ([3,2])
右方 ([3,5])
因此,被覆盖的建筑数量是 1。

说明:

  • 2 <= n <= 10^5
  • 1 <= buildings.length <= 10^5
  • buildings[i] = [x, y]
  • 1 <= x, y <= n
  • buildings 中所有坐标均 唯一 。

思路

二维数组 buildings 表示建筑的坐标,如果建筑的上下左右均存在其它建筑,则称该建筑被包围。统计被包围建筑的个数。

只需记录每一行每一列的最大值与最小值,判断当前建筑是否在其中。

代码


/**
 * @date 2025-12-11 14:03
 */
public class CountCoveredBuildings3531 {

    public int countCoveredBuildings_v1(int n, int[][] buildings) {
        int[] minX = new int[n + 1];
        int[] maxX = new int[n + 1];
        int[] minY = new int[n + 1];
        int[] maxY = new int[n + 1];
        Arrays.fill(minX, n + 1);
        Arrays.fill(minY, n + 1);
        for (int[] building : buildings) {
            int x = building[0];
            int y = building[1];
            minX[y] = Math.min(minX[y], x);
            maxX[y] = Math.max(maxX[y], x);
            minY[x] = Math.min(minY[x], y);
            maxY[x] = Math.max(maxY[x], y);
        }
        int res = 0;
        for (int[] building : buildings) {
            int x = building[0];
            int y = building[1];
            if (x > minX[y] && x < maxX[y] && y > minY[x] && y < maxY[x]) {
                res++;
            }
        }
        return res;
    }

}

性能

3577.统计计算机解锁顺序排列数

目标

给你一个长度为 n 的数组 complexity。

在房间里有 n 台 上锁的 计算机,这些计算机的编号为 0 到 n - 1,每台计算机都有一个 唯一 的密码。编号为 i 的计算机的密码复杂度为 complexity[i]。

编号为 0 的计算机密码已经 解锁 ,并作为根节点。其他所有计算机必须通过它或其他已经解锁的计算机来解锁,具体规则如下:

  • 可以使用编号为 j 的计算机的密码解锁编号为 i 的计算机,其中 j 是任何小于 i 的整数,且满足 complexity[j] < complexity[i](即 j < i 并且 complexity[j] < complexity[i])。
  • 要解锁编号为 i 的计算机,你需要事先解锁一个编号为 j 的计算机,满足 j < i 并且 complexity[j] < complexity[i]。

求共有多少种 [0, 1, 2, ..., (n - 1)] 的排列方式,能够表示从编号为 0 的计算机(唯一初始解锁的计算机)开始解锁所有计算机的有效顺序。

由于答案可能很大,返回结果需要对 10^9 + 7 取余数。

注意:编号为 0 的计算机的密码已解锁,而 不是 排列中第一个位置的计算机密码已解锁。

排列 是一个数组中所有元素的重新排列。

示例 1:

输入: complexity = [1,2,3]
输出: 2
解释:
有效的排列有:
[0, 1, 2]
首先使用根密码解锁计算机 0。
使用计算机 0 的密码解锁计算机 1,因为 complexity[0] < complexity[1]。
使用计算机 1 的密码解锁计算机 2,因为 complexity[1] < complexity[2]。
[0, 2, 1]
首先使用根密码解锁计算机 0。
使用计算机 0 的密码解锁计算机 2,因为 complexity[0] < complexity[2]。
使用计算机 0 的密码解锁计算机 1,因为 complexity[0] < complexity[1]。

示例 2:

输入: complexity = [3,3,3,4,4,4]
输出: 0
解释:
没有任何排列能够解锁所有计算机。

说明:

  • 2 <= complexity.length <= 10^5
  • 1 <= complexity[i] <= 10^9

思路

如果要解锁所有计算机,第一台的复杂度必须是唯一最小值。因此可以用第一台解锁后面所有计算机,排列数为 (n - 1)!

代码


/**
 * @date 2025-12-10 9:06
 */
public class CountPermutations3577 {

    public int countPermutations(int[] complexity) {
        int mod = 1000000007;
        int res = 1;
        int n = complexity.length;
        long c = 1;
        int min = complexity[0];
        for (int i = 1; i < n; i++) {
            if (complexity[i] <= min) {
                return 0;
            }
            res = (int) ((res * c++) % mod);
        }
        return res;
    }

}

性能

3583.统计特殊三元组

目标

给你一个整数数组 nums。

特殊三元组 定义为满足以下条件的下标三元组 (i, j, k):

  • 0 <= i < j < k < n,其中 n = nums.length
  • nums[i] == nums[j] * 2
  • nums[k] == nums[j] * 2

返回数组中 特殊三元组 的总数。

由于答案可能非常大,请返回结果对 10^9 + 7 取余数后的值。

示例 1:

输入: nums = [6,3,6]
输出: 1
解释:
唯一的特殊三元组是 (i, j, k) = (0, 1, 2),其中:
nums[0] = 6, nums[1] = 3, nums[2] = 6
nums[0] = nums[1] * 2 = 3 * 2 = 6
nums[2] = nums[1] * 2 = 3 * 2 = 6

示例 2:

输入: nums = [0,1,0,0]
输出: 1
解释:
唯一的特殊三元组是 (i, j, k) = (0, 2, 3),其中:
nums[0] = 0, nums[2] = 0, nums[3] = 0
nums[0] = nums[2] * 2 = 0 * 2 = 0
nums[3] = nums[2] * 2 = 0 * 2 = 0

示例 3:

输入: nums = [8,4,2,8,4]
输出: 2
解释:
共有两个特殊三元组:
(i, j, k) = (0, 1, 3)
nums[0] = 8, nums[1] = 4, nums[3] = 8
nums[0] = nums[1] * 2 = 4 * 2 = 8
nums[3] = nums[1] * 2 = 4 * 2 = 8
(i, j, k) = (1, 2, 4)
nums[1] = 4, nums[2] = 2, nums[4] = 4
nums[1] = nums[2] * 2 = 2 * 2 = 4
nums[4] = nums[2] * 2 = 2 * 2 = 4

说明:

  • 3 <= n == nums.length <= 10^5
  • 0 <= nums[i] <= 10^5

思路

找到数组 nums 的三元组 (i, j, k) 满足 nums[i] == nums[k] == 2 * nums[j],返回特殊三元组的个数。注意这里三元组是元素下标所以不会重复。

枚举右端点,如果为偶数,查找中间元素 nums[k]/2 作为右端点的二元组个数,该二元组 (i, j) 可以同时维护,找到左侧 i 的个数,满足 nums[i] == 2 * nums[j]

代码


/**
 * @date 2025-12-09 8:55
 */
public class SpecialTriplets3583 {

    public int specialTriplets_v1(int[] nums) {
        int n = nums.length;
        int mod = 1000000007;
        Map<Integer, Long> cnt = new HashMap<>();
        Map<Integer, Long> binaryCnt = new HashMap<>();
        long res = 0;
        for (int i = 0; i < n; i++) {
            if (nums[i] % 2 == 0) {
                res += binaryCnt.getOrDefault(nums[i] / 2, 0L);
            }
            binaryCnt.merge(nums[i], cnt.getOrDefault(nums[i] * 2, 0L), Long::sum);
            cnt.merge(nums[i], 1L, Long::sum);
        }
        return (int) (res % mod);
    }

}

性能

3578.统计极差最大为K的分割方式数

目标

给你一个整数数组 nums 和一个整数 k。你的任务是将 nums 分割成一个或多个 非空 的连续子段,使得每个子段的 最大值 与 最小值 之间的差值 不超过 k。

返回在此条件下将 nums 分割的总方法数。

由于答案可能非常大,返回结果需要对 10^9 + 7 取余数。

示例 1:

输入: nums = [9,4,1,3,7], k = 4
输出: 6
解释:
共有 6 种有效的分割方式,使得每个子段中的最大值与最小值之差不超过 k = 4:
[[9], [4], [1], [3], [7]]
[[9], [4], [1], [3, 7]]
[[9], [4], [1, 3], [7]]
[[9], [4, 1], [3], [7]]
[[9], [4, 1], [3, 7]]
[[9], [4, 1, 3], [7]]

示例 2:

输入: nums = [3,3,4], k = 0
输出: 2
解释:
共有 2 种有效的分割方式,满足给定条件:
[[3], [3], [4]]
[[3, 3], [4]]

说明:

  • 2 <= nums.length <= 5 * 10^4
  • 1 <= nums[i] <= 10^9
  • 0 <= k <= 10^9

思路

划分数组 nums,使得每一个子数组的最大最小值之差不超过 k,求划分的总方法数。

定义 dp[i] 表示 [0, i] 满足条件的划分数,dp[i + 1] = Σdp[j] j∈[l, i],l 是固定右端点后满足条件的最小下标。

枚举满足条件的最小下标时可以使用滑动窗口,使用单调栈来维护窗口的最大值与最小值。

代码


/**
 * @date 2025-12-09 9:38
 */
public class CountPartitions3578 {

    public int countPartitions(int[] nums, int k) {
        Deque<Integer> max = new ArrayDeque<>();
        Deque<Integer> min = new ArrayDeque<>();
        int mod = 1000000007;
        int n = nums.length;
        long[] dp = new long[n + 1];
        dp[0] = 1;
        int l = 0;
        long window = 0;
        for (int r = 0; r < n; r++) {
            while (!max.isEmpty() && max.peekLast() < nums[r]) {
                max.pollLast();
            }
            while (!min.isEmpty() && min.peekLast() > nums[r]) {
                min.pollLast();
            }
            max.offer(nums[r]);
            min.offer(nums[r]);
            int diff = max.peek() - min.peek();

            window += dp[r];
            while (l <= r && diff > k) {
                if (max.peek() == nums[l]) {
                    max.poll();
                }
                if (min.peek() == nums[l]) {
                    min.poll();
                }
                diff = max.peek() - min.peek();
                window -= dp[l++];
            }
            dp[r + 1] = window % mod;
        }
        return (int) (dp[n] % mod);
    }

}

性能