1870.准时到达的列车最小时速

目标

给你一个浮点数 hour ,表示你到达办公室可用的总通勤时间。要到达办公室,你必须按给定次序乘坐 n 趟列车。另给你一个长度为 n 的整数数组 dist ,其中 dist[i] 表示第 i 趟列车的行驶距离(单位是千米)。

每趟列车均只能在整点发车,所以你可能需要在两趟列车之间等待一段时间。

  • 例如,第 1 趟列车需要 1.5 小时,那你必须再等待 0.5 小时,搭乘在第 2 小时发车的第 2 趟列车。

返回能满足你准时到达办公室所要求全部列车的 最小正整数 时速(单位:千米每小时),如果无法准时到达,则返回 -1 。

生成的测试用例保证答案不超过 10^7 ,且 hour 的 小数点后最多存在两位数字 。

示例 1:

输入:dist = [1,3,2], hour = 6
输出:1
解释:速度为 1 时:
- 第 1 趟列车运行需要 1/1 = 1 小时。
- 由于是在整数时间到达,可以立即换乘在第 1 小时发车的列车。第 2 趟列车运行需要 3/1 = 3 小时。
- 由于是在整数时间到达,可以立即换乘在第 4 小时发车的列车。第 3 趟列车运行需要 2/1 = 2 小时。
- 你将会恰好在第 6 小时到达。

示例 2:

输入:dist = [1,3,2], hour = 2.7
输出:3
解释:速度为 3 时:
- 第 1 趟列车运行需要 1/3 = 0.33333 小时。
- 由于不是在整数时间到达,故需要等待至第 1 小时才能搭乘列车。第 2 趟列车运行需要 3/3 = 1 小时。
- 由于是在整数时间到达,可以立即换乘在第 2 小时发车的列车。第 3 趟列车运行需要 2/3 = 0.66667 小时。
- 你将会在第 2.66667 小时到达。

示例 3:

输入:dist = [1,3,2], hour = 1.9
输出:-1
解释:不可能准时到达,因为第 3 趟列车最早是在第 2 小时发车。

说明:

  • n == dist.length
  • 1 <= n <= 10^5
  • 1 <= dist[i] <= 10^5
  • 1 <= hour <= 10^9
  • hours 中,小数点后最多存在两位数字

思路

从家到办公室需要依次乘坐 n 趟列车,列车只在整点发车,已知每趟车的行驶距离 dist[i],问在给定通勤时间 hour 内到达办公室,列车的最低时速是多少,取正整数,如果无法按时到达返回 -1

我们假设时速为 v,那么到达办公室的时间为 cost = Σ⌈dist[i]/v⌉ + dist[n-1]/v 前面 n - 1 趟车通勤时间需要考虑等车时间,所以要向上取整,最后一趟车则不需要向上取整。我们只需要满足cost <= hour 即可。由于时速需要取正整数,那么 v 也应该向上取整。

这道题的难点在于如何在 v 未知的情况下,向上取整后再求和,没办法直接计算。只能搜索解空间了,我们可以估算出 v 的取值范围,然后使用二分查找代入式子计算并与 hour 比较。v 的下界为 Σdist[i]/hour,上界是 max(dist[i]) * 100,这相当于是一趟车最大的距离除以最小的时间,如果这个速度还赶不上,那就赶不上了。

求和的时间复杂度为 O(n)n 最大 10^5 ,距离最大 10^5 有可能溢出,应使用 long 类型。二分查找的复杂度为 O(nlogv)v 最大值为 10^10log2(10^10) ≈ 33.2,总的规模为 10 ^ 6 可行。

代码


/**
 * @date 2024-10-02 21:44
 */
public class MinSpeedOnTime1870 {

    public int minSpeedOnTime(int[] dist, double hour) {
        long sum = 0;
        for (int value : dist) {
            sum += value;
        }
        int v = (int) Math.ceil(sum / hour - 0.5);
        long l = v, r = 200 * sum, m = l + (r - l) / 2;
        while (l <= r) {
            if (check(dist, hour, m)) {
                r = m - 1;
            } else {
                l = m + 1;
            }
            m = l + (r - l) / 2;
        }
        return l > 200 * sum ? -1 : (int)l;
    }

    private boolean check(int[] dist, double hour, long m) {
        int n = dist.length;
        double cost = 0;
        for (int i = 0; i < n - 1; i++) {
            cost += Math.ceil((double) dist[i] / m);
        }
        cost += (double) dist[n - 1] / m;
        return cost <= hour;
    }

}

性能

983.最低票价

目标

在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行。在接下来的一年里,你要旅行的日子将以一个名为 days 的数组给出。每一项是一个从 1 到 365 的整数。

火车票有 三种不同的销售方式 :

  • 一张 为期一天 的通行证售价为 costs[0] 美元;
  • 一张 为期七天 的通行证售价为 costs[1] 美元;
  • 一张 为期三十天 的通行证售价为 costs[2] 美元。

通行证允许数天无限制的旅行。 例如,如果我们在第 2 天获得一张 为期 7 天 的通行证,那么我们可以连着旅行 7 天:第 2 天、第 3 天、第 4 天、第 5 天、第 6 天、第 7 天和第 8 天。

返回 你想要完成在给定的列表 days 中列出的每一天的旅行所需要的最低消费 。

示例 1:

输入:days = [1,4,6,7,8,20], costs = [2,7,15]
输出:11
解释: 
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划:
在第 1 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 1 天生效。
在第 3 天,你花了 costs[1] = $7 买了一张为期 7 天的通行证,它将在第 3, 4, ..., 9 天生效。
在第 20 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 20 天生效。
你总共花了 $11,并完成了你计划的每一天旅行。

示例 2:

输入:days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]
输出:17
解释:
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划: 
在第 1 天,你花了 costs[2] = $15 买了一张为期 30 天的通行证,它将在第 1, 2, ..., 30 天生效。
在第 31 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 31 天生效。 
你总共花了 $17,并完成了你计划的每一天旅行。

说明:

  • 1 <= days.length <= 365
  • 1 <= days[i] <= 365
  • days 按顺序严格递增
  • costs.length == 3
  • 1 <= costs[i] <= 1000

思路

有一个严格递增的出行计划表 daysdays[i] 表示计划在这一天出行。出行需要持有通行证,通行证有三种,1 天有效期,7 天有效期,30 天有效期,价格各不相同。求完成出行计划所需的最低花费。

定义 dp[i] 表示截止到第 i 天的最小花费,初始化数组大小为 days[n - 1] + 1

  • 如果第 i 天需要出行,dp[i] = Math.min(dp[i - 1] + cost[0], dp[i - 7] + cost[1], dp[i - 30] + cost[2])
  • 否则,dp[i] = dp[i - 1]

网友最快题解定义 dp[i] 为旅行了 i 天的最小花费,这样与 days[i] 的数据范围无关,仅与出行天数 days.length 有关。

代码


/**
 * @date 2024-10-01 20:43
 */
public class MincostTickets983 {

    /**
     * 针对 前面方法 的优化
     * 去掉初始化 dp[i] 为截止到第i天 使用一天票的总花费,
     * 使用数组记录是否出行
     */
    public int mincostTickets_v1(int[] days, int[] costs) {
        int n = days.length;
        int end = days[n - 1];
        int[] dp = new int[end + 1];
        boolean[] isTravel = new boolean[end + 1];
        for (int day : days) {
            isTravel[day] = true;
        }
        for (int i = 1; i <= end; i++) {
            int tmp7 = Math.max(0, i - 7);
            int tmp30 = Math.max(0, i - 30);
            if (isTravel[i]) {
                dp[i] = Math.min(dp[i - 1] + costs[0], dp[tmp7] + costs[1]);
                dp[i] = Math.min(dp[i], dp[tmp30] + costs[2]);
            } else {
                dp[i] = dp[i - 1];
            }
        }
        return dp[end];
    }

    public int mincostTickets(int[] days, int[] costs) {
        int n = days.length;
        int end = days[n - 1];
        int[] dp = new int[end + 1];
        int last = 0;
        int index = 0;
        Set<Integer> set = new HashSet<>(n);
        for (int day : days) {
            set.add(day);
            while (index < day) {
                dp[index++] = last;
            }
            dp[day] += last + costs[0];
            last = dp[day];
        }
        for (int i = 1; i <= end; i++) {
            int tmp7 = Math.max(0, i - 7);
            int tmp30 = Math.max(0, i - 30);
            if (!set.contains(i)) {
                dp[i] = dp[i - 1];
            } else {
                dp[i] = Math.min(dp[i - 1] + costs[0], dp[tmp7] + costs[1]);
                dp[i] = Math.min(dp[i], dp[tmp30] + costs[2]);
            }
        }
        return dp[end];
    }

}

性能

  • 去掉 dp[i] 的初始化,刚开始写的是将其初始化为截止到第 i 天使用一天票的总花费
  • 使用数组记录是否出行

1845.座位预约管理系统

目标

请你设计一个管理 n 个座位预约的系统,座位编号从 1 到 n 。

请你实现 SeatManager 类:

  • SeatManager(int n) 初始化一个 SeatManager 对象,它管理从 1 到 n 编号的 n 个座位。所有座位初始都是可预约的。
  • int reserve() 返回可以预约座位的 最小编号 ,此座位变为不可预约。
  • void unreserve(int seatNumber) 将给定编号 seatNumber 对应的座位变成可以预约。

示例 1:

输入:
["SeatManager", "reserve", "reserve", "unreserve", "reserve", "reserve", "reserve", "reserve", "unreserve"]
[[5], [], [], [2], [], [], [], [], [5]]
输出:
[null, 1, 2, null, 2, 3, 4, 5, null]

解释:
SeatManager seatManager = new SeatManager(5); // 初始化 SeatManager ,有 5 个座位。
seatManager.reserve();    // 所有座位都可以预约,所以返回最小编号的座位,也就是 1 。
seatManager.reserve();    // 可以预约的座位为 [2,3,4,5] ,返回最小编号的座位,也就是 2 。
seatManager.unreserve(2); // 将座位 2 变为可以预约,现在可预约的座位为 [2,3,4,5] 。
seatManager.reserve();    // 可以预约的座位为 [2,3,4,5] ,返回最小编号的座位,也就是 2 。
seatManager.reserve();    // 可以预约的座位为 [3,4,5] ,返回最小编号的座位,也就是 3 。
seatManager.reserve();    // 可以预约的座位为 [4,5] ,返回最小编号的座位,也就是 4 。
seatManager.reserve();    // 唯一可以预约的是座位 5 ,所以返回 5 。
seatManager.unreserve(5); // 将座位 5 变为可以预约,现在可预约的座位为 [5] 。

说明:

  • 1 <= n <= 10^5
  • 1 <= seatNumber <= n
  • 每一次对 reserve 的调用,题目保证至少存在一个可以预约的座位。
  • 每一次对 unreserve 的调用,题目保证 seatNumber 在调用函数前都是被预约状态。
  • 对 reserve 和 unreserve 的调用 总共 不超过 10^5 次。

思路

设计一个座位预约系统,初始化 n 个座位,可以预约尚未预约的编号最小的座位,支持取消预约操作。

核心是解决取消预约后如何获取编号最小值的问题,可以使用最小堆维护剩余座位。

网友指出,初始化的复杂度与 n 有关,当 n 规模过大时会超时。可以使用最小堆维护取消预订的座位,显然取消预订的座位编号一定小于未被预定的座位编号。记录已预定出去的座位最高位 max,如果堆不为空则取堆顶元素,否则返回 max + 1

代码


/**
 * @date 2024-09-30 21:46
 */
public  class SeatManager {

    private PriorityQueue<Integer> q;

    public SeatManager(int n) {
        q = new PriorityQueue<>();
        for (int i = 1; i <= n; i++) {
            q.offer(i);
        }
    }

    public int reserve() {
        return q.poll();
    }

    public void unreserve(int seatNumber) {
        q.offer(seatNumber);
    }

}

性能

2516.每种字符至少取K个

目标

给你一个由字符 'a'、'b'、'c' 组成的字符串 s 和一个非负整数 k 。每分钟,你可以选择取走 s 最左侧 还是 最右侧 的那个字符。

你必须取走每种字符 至少 k 个,返回需要的 最少 分钟数;如果无法取到,则返回 -1 。

示例 1:

输入:s = "aabaaaacaabc", k = 2
输出:8
解释:
从 s 的左侧取三个字符,现在共取到两个字符 'a' 、一个字符 'b' 。
从 s 的右侧取五个字符,现在共取到四个字符 'a' 、两个字符 'b' 和两个字符 'c' 。
共需要 3 + 5 = 8 分钟。
可以证明需要的最少分钟数是 8 。

示例 2:

输入:s = "a", k = 1
输出:-1
解释:无法取到一个字符 'b' 或者 'c',所以返回 -1 。

说明:

  • 1 <= s.length <= 10^5
  • s 仅由字母 'a'、'b'、'c' 组成
  • 0 <= k <= s.length

思路

有一个仅由 abc 组成的字符串,每一分钟可以选择访问两端(最左侧/最右侧)的未访问字符,求访问 abc 每种字符至少 k 次最少需要多少分钟。

可以将字符串拼接到末尾,问题转化为滑动窗口问题,求使窗口内包含k个 abc 的最小窗口长度。但这里有一个限制,窗口必须包含首尾交界点,就像有一个轴在窗口里面,窗口可以左右延展。

我们可以先向左侧滑动,找到满足条件的最左侧下标,然后枚举左端点向右滑动,直到左边界越过交界点,枚举的过程中延展右边界直到满足条件。

官网题解中使用了逆向思维,先求出字符串中 abc 的个数,窗口在中间滑动,窗口内的 abc 是不选的,使用总数减去窗口内的计数判断是否满足条件。

代码


/**
 * @date 2024-09-27 9:12
 */
public class TakeCharacters2516 {

    public int takeCharacters(String s, int k) {
        if (k == 0) {
            return 0;
        }
        int res = Integer.MAX_VALUE;
        int[] cnt = new int[3];
        char[] chars = s.toCharArray();
        int n = chars.length;
        int l = n - 1;
        while (l >= 0 && (cnt[0] < k || cnt[1] < k || cnt[2] < k)) {
            cnt[chars[l--] - 'a']++;
        }
        if (cnt[0] < k || cnt[1] < k || cnt[2] < k) {
            return -1;
        }
        l++;
        int r = n;
        int doubleN = 2 * chars.length;
        for (; l <= n; l++) {
            while (r < doubleN && (cnt[0] < k || cnt[1] < k || cnt[2] < k)) {
                cnt[chars[r++ % n] - 'a']++;
            }
            res = Math.min(res, r - l);
            if (l == n) {
                break;
            }
            cnt[chars[l] - 'a']--;
        }
        return res;
    }

}

性能

2207.字符串中最多数目的子序列

目标

给你一个下标从 0 开始的字符串 text 和另一个下标从 0 开始且长度为 2 的字符串 pattern ,两者都只包含小写英文字母。

你可以在 text 中任意位置插入 一个 字符,这个插入的字符必须是 pattern[0] 或者 pattern[1] 。注意,这个字符可以插入在 text 开头或者结尾的位置。

请你返回插入一个字符后,text 中最多包含多少个等于 pattern 的 子序列 。

子序列 指的是将一个字符串删除若干个字符后(也可以不删除),剩余字符保持原本顺序得到的字符串。

示例 1:

输入:text = "abdcdbc", pattern = "ac"
输出:4
解释:
如果我们在 text[1] 和 text[2] 之间添加 pattern[0] = 'a' ,那么我们得到 "abadcdbc" 。那么 "ac" 作为子序列出现 4 次。
其他得到 4 个 "ac" 子序列的方案还有 "aabdcdbc" 和 "abdacdbc" 。
但是,"abdcadbc" ,"abdccdbc" 和 "abdcdbcc" 这些字符串虽然是可行的插入方案,但是只出现了 3 次 "ac" 子序列,所以不是最优解。
可以证明插入一个字符后,无法得到超过 4 个 "ac" 子序列。

示例 2:

输入:text = "aabb", pattern = "ab"
输出:6
解释:
可以得到 6 个 "ab" 子序列的部分方案为 "aaabb" ,"aaabb" 和 "aabbb" 。

说明:

  • 1 <= text.length <= 10^5
  • pattern.length == 2
  • text 和 pattern 都只包含小写英文字母。

思路

已知字符串 pattern 包含两个小写英文字符,可以将其中的一个字符插入字符串 text,求插入后最多可以得到多少个个等于 pattern 的子序列。

刚开始想的是根据乘法原理来做,统计字符串中这两个字符出现的次数,cnt1cnt2,插入出现次数较小的字符,可以使子序列个数增加最多。子序列个数为 Math.max(cnt1, cnt2) * (Math.min(cnt1, cnt2) + 1)

但是这个想法忽略了这种情况,考虑字符串 mpmpcnt1 = 2, cnt2 = 2,但是子序列个数并不是 4,而是 3,需要减去第二个 m 之前的 p 的个数。我们不妨以 pattern[0] 为终点,统计它前面的 pattern[1] 的个数,将其从结果中减去。

其实这里还有一个漏洞,应该考虑 pattern 这两个字符相同的情况。c(n,2) = n(n - 1)/2,注意实际计算的时候应该将 n1,因为我们插入了一个字符,即 cnt1 * (cnt1 + 1) / 2

还是存在一个问题,比如 text 中的字符与 pattern 都是由一个相同的字符组成,那么 cnt1 最大值为 10^5,在乘法计算时就会溢出,需要使用long类型。

官网题解的思路是先计算不插入字符时子序列的个数,遇到 pattern[1] 就累加 pattern[0],同时记录二者的出现次数:

  • 如果 pattern[1] 出现次数更多,可以在开头插入 pattern[0] 使得子序列个数增加 pattern[1]
  • 如果 pattern[0] 出现次数更多,可以在结尾插入 pattern[1] 使得子序列个数增加 pattern[0]

最后直接将累加结果加上 Math.max(cnt1, cnt2) 即可。

代码


/**
 * @date 2024-09-24 8:54
 */
public class MaximumSubsequenceCount2207 {
    public long maximumSubsequenceCount(String text, String pattern) {
        long cnt1 = 0, cnt2 = 0;
        char c1 = pattern.charAt(0), c2 = pattern.charAt(1);
        char[] chars = text.toCharArray();
        long sub = 0;
        for (char c : chars) {
            if (c1 == c) {
                cnt1++;
                sub += cnt2;
            } else if (c2 == c) {
                cnt2++;
            }
        }
        if (c1 == c2) {
            return cnt1 * (cnt1 + 1) / 2;
        }
        return Math.max(cnt1, cnt2) * (Math.min(cnt1, cnt2) + 1) - sub;
    }

}

性能

1014.最佳观光组合

目标

给你一个正整数数组 values,其中 values[i] 表示第 i 个观光景点的评分,并且两个景点 i 和 j 之间的 距离 为 j - i。

一对景点(i < j)组成的观光组合的得分为 values[i] + values[j] + i - j ,也就是景点的评分之和 减去 它们两者之间的距离。

返回一对观光景点能取得的最高分。

示例 1:

输入:values = [8,1,5,2,6]
输出:11
解释:i = 0, j = 2, values[i] + values[j] + i - j = 8 + 5 + 0 - 2 = 11

示例 2:

输入:values = [1,2]
输出:2

说明:

  • 2 <= values.length <= 5 * 10^4
  • 1 <= values[i] <= 1000

思路

从数组 values 中选两个下标,计算 values[i] + values[j] + i - j 的最大值。

遍历可能组合的复杂度为 O(n^2),暴力求解不可行。很自然地想动态规划,考虑重复子问题是什么?如果是累加 i ~ j 范围内的 value,然后再加上 i - j,由于 value[i] >= 1,当 j 固定的时候,i 应该尽可能的小,因为累加 value[i] 抵消了 i 的减少。但这里并不是累加所有景点的评分,而是选两个景点,然后再考虑它们之间的距离。

注意到,当 j 固定时,评分的最大值即为 value[i] + i 的最大值。当 i 固定时,评分最大值为 values[j] - j 的最大值。但是我们不能直接取这两个最大值相加,需要保证 i 取得最大值时,i < j。枚举右边界,计算之前的最大值。

定义 dp[i] 表示 [0, i] 范围内, value[i] + i 的最大值。那么评分的最大值即为 value[j] - j + dp[j - 1] 的最大值。由于只与 dp[j - 1] 有关,可以进行空间优化,用一个变量保存截止到前一个元素的最大值。

这里面有一个小技巧是将 maxi 放到后面更新,这样就不用维护 i = j - 1 这个指针了。

代码


/**
 * @date 2024-09-23 9:26
 */
public class MaxScoreSightseeingPair1014 {

    public int maxScoreSightseeingPair(int[] values) {
        int n = values.length;
        int maxi = values[0];
        int res = 0;
        for (int j = 1; j < n; j++) {
            res = Math.max(res, values[j] - j + maxi);
            maxi = Math.max(maxi, values[j] + j);
        }
        return res;
    }

}

性能

2374.边积分最高的节点

目标

给你一个有向图,图中有 n 个节点,节点编号从 0 到 n - 1 ,其中每个节点都 恰有一条 出边。

图由一个下标从 0 开始、长度为 n 的整数数组 edges 表示,其中 edges[i] 表示存在一条从节点 i 到节点 edges[i] 的 有向 边。

节点 i 的 边积分 定义为:所有存在一条指向节点 i 的边的节点的 编号 总和。

返回 边积分 最高的节点。如果多个节点的 边积分 相同,返回编号 最小 的那个。

示例 1:

输入:edges = [1,0,0,0,0,7,7,5]
输出:7
解释:
- 节点 1、2、3 和 4 都有指向节点 0 的边,节点 0 的边积分等于 1 + 2 + 3 + 4 = 10 。
- 节点 0 有一条指向节点 1 的边,节点 1 的边积分等于 0 。
- 节点 7 有一条指向节点 5 的边,节点 5 的边积分等于 7 。
- 节点 5 和 6 都有指向节点 7 的边,节点 7 的边积分等于 5 + 6 = 11 。
节点 7 的边积分最高,所以返回 7 。

示例 2:

输入:edges = [2,0,0,2]
输出:0
解释:
- 节点 1 和 2 都有指向节点 0 的边,节点 0 的边积分等于 1 + 2 = 3 。
- 节点 0 和 3 都有指向节点 2 的边,节点 2 的边积分等于 0 + 3 = 3 。
节点 0 和 2 的边积分都是 3 。由于节点 0 的编号更小,返回 0 。

说明:

  • n == edges.length
  • 2 <= n <= 10^5
  • 0 <= edges[i] < n
  • edges[i] != i

思路

n 个节点编号为 0 ~ n-1,每个节点都有一条边指向自己或者其它节点,edges[i] 表示节点 i 指向节点 edges[i]。节点的边积分定义为所有指向该节点的节点编号之和。求边积分最高的节点编号,如果相同则取编号最小的那个。

直接为被指向节点累加积分,取最大积分中编号最小的即可。容易出错的点是数据溢出,当所有节点都指向 0 节点时,边积分最大,其值为 1 ~ 最大节点编号n 求和 n(n+1)/2。编号最大为 100000,边积分最大值为 5000050000 需要使用 long 型计数。

代码


/**
 * @date 2024-09-21 10:55
 */
public class EdgeScore2374 {

    public int edgeScore(int[] edges) {
        int n = edges.length;
        long[] cnt = new long[n];
        for (int i = 0; i < n; i++) {
            cnt[edges[i]] += i;
        }
        int res = 0;
        for (int i = 0; i < n; i++) {
            if (cnt[i] > cnt[res]) {
                res = i;
            }
        }
        return res;
    }

}

性能

2414.最长的字母序连续子字符串的长度

目标

字母序连续字符串 是由字母表中连续字母组成的字符串。换句话说,字符串 "abcdefghijklmnopqrstuvwxyz" 的任意子字符串都是 字母序连续字符串 。

  • 例如,"abc" 是一个字母序连续字符串,而 "acb" 和 "za" 不是。

给你一个仅由小写英文字母组成的字符串 s ,返回其 最长 的 字母序连续子字符串 的长度。

示例 1:

输入:s = "abacaba"
输出:2
解释:共有 4 个不同的字母序连续子字符串 "a"、"b"、"c" 和 "ab" 。
"ab" 是最长的字母序连续子字符串。

示例 2:

输入:s = "abcde"
输出:5
解释:"abcde" 是最长的字母序连续子字符串。

说明:

  • 1 <= s.length <= 10^5
  • s 由小写英文字母组成

思路

首先要明确 字母序连续 的含义, abc 是字母序连续,abd abccd 是不是字母序连续?不是。

An alphabetical continuous string is a string consisting of consecutive letters in the alphabet. In other words, it is any substring of the string "abcdefghijklmnopqrstuvwxyz".

字母序连续字符串是由字母表中连续的字母组成的字符串,即 abcdefghijklmnopqrstuvwxyz 的任意子字符串。

有一个由小写英文字母组成的字符串,求它的字母序连续子串的最大长度。显然,最大长度不会超过26。只需要一次遍历,如果不是字母序连续则重新计数,取最大值即可。

代码


/**
 * @date 2024-09-19 13:48
 */
public class LongestContinuousSubstring2414 {

    public int longestContinuousSubstring(String s) {
        int n = s.length();
        int res = 0;
        int cnt = 0;
        int last = s.charAt(0) - 1;
        for (int i = 0; i < n; i++) {
            char c = s.charAt(i);
            if (c - last == 1) {
                res = Math.max(res, ++cnt);
            } else {
                cnt = 1;
            }
            last = c;
        }
        return res;
    }

}

性能

2332.坐上公交的最晚时间

目标

给你一个下标从 0 开始长度为 n 的整数数组 buses ,其中 buses[i] 表示第 i 辆公交车的出发时间。同时给你一个下标从 0 开始长度为 m 的整数数组 passengers ,其中 passengers[j] 表示第 j 位乘客的到达时间。所有公交车出发的时间互不相同,所有乘客到达的时间也互不相同。

给你一个整数 capacity ,表示每辆公交车 最多 能容纳的乘客数目。

每位乘客都会搭乘下一辆有座位的公交车。如果你在 y 时刻到达,公交在 x 时刻出发,满足 y <= x 且公交没有满,那么你可以搭乘这一辆公交。最早 到达的乘客优先上车。

返回你可以搭乘公交车的最晚到达公交站时间。你 不能 跟别的乘客同时刻到达。

注意:数组 buses 和 passengers 不一定是有序的。

示例 1:

输入:buses = [10,20], passengers = [2,17,18,19], capacity = 2
输出:16
解释:
第 1 辆公交车载着第 1 位乘客。
第 2 辆公交车载着你和第 2 位乘客。
注意你不能跟其他乘客同一时间到达,所以你必须在第二位乘客之前到达。

示例 2:

输入:buses = [20,30,10], passengers = [19,13,26,4,25,11,21], capacity = 2
输出:20
解释:
第 1 辆公交车载着第 4 位乘客。
第 2 辆公交车载着第 6 位和第 2 位乘客。
第 3 辆公交车载着第 1 位乘客和你。

说明:

  • n == buses.length
  • m == passengers.length
  • 1 <= n, m, capacity <= 10^5
  • 2 <= buses[i], passengers[i] <= 10^9
  • buses 中的元素 互不相同 。
  • passengers 中的元素 互不相同 。

思路

已知某路公交车的最大容量 capacity,离开时间数组 buses,以及乘客到达时间数组 passengers。离开/到达 时间是整数,乘客的到达时间各不相同,自己的到达时间也不能与其它乘客重复,问能够赶上公交的最晚到达时间。

刚开始想到了二分查找,理论上来说只要在 0 ~ buses[n - 1] 内找到不与 passengers 重复的最大值即可。但是问题在于,如果与其它乘客的到达时间重复了,我们该如何缩小范围呢?向左找还是向右找?这个是不确定的,二分查找需要能够明确地排除一半的数据范围,这里是做不到的。

我们也不能直接从小于 buses[n - 1] 的乘客开始向前枚举,因为车的容量是有限的,如果前面积压的乘客过多,后面的乘客照样上不了车。

如果没有限制条件,我们只需要作为最后一班车的最后一名乘客上车即可。但这里要求到达时间不能与其它乘客相同,如果已经有乘客在最后一班车准备离开时到达,我们无法作为最后一名乘客上车。考虑这种极端情况,公交到达时间为 5 10 15 容量为5,乘客到达时间为 2 3 4 5 6 | 7 8 9 10 11 | 12 13 14 15 16 我们必须在时间 1 之前到达,其它时间会与乘客到达时间相同或者赶不上公交。

我们可以首先将公交的离开时间以及乘客的到达时间排序,然后枚举每一辆公交,如果 passengers[i] <= buses[j] && capacity > 0 就可以上车,并将 capacity-- 。车满了或者没有剩余乘客在当前公交离开时间之前到达,将 capacity 重置,等待下一班车。然后我们判断最后一班车是否有剩余位置,如果有则取 buses[n - 1],否则取最后一位上车的乘客到达时间。最后判断是否与最后一名上车的乘客的到达时间相同,如果相同,则将时间减一并与倒数第二名上车的乘客到达时间比较,以此类推。最开始使用了哈希表保存了乘客的到达时间,然后判断是否在集合内,其实没有必要,因为乘客到达时间数组已经排过序了,依次从后向前找如果不相等则一定不在数组中。

最后的处理有许多细节,比如不能直接取最后一名乘客的到达时间减1,需要判断是否有空位;如果有空位不能直接返回buses[n - 1],需要判断是否重复;最开始是外层枚举乘客,内层枚举公交车,这样会漏掉乘客枚举完但还剩余公交车的情况,这时最后一名乘客不能算入最后一班车的位置,等等。

代码


/**
 * @date 2024-09-18 10:41
 */
public class LatestTimeCatchTheBus2332 {

    public int latestTimeCatchTheBus_v2(int[] buses, int[] passengers, int capacity) {
        Arrays.sort(buses);
        Arrays.sort(passengers);
        int n = buses.length;
        int m = passengers.length;
        int i = 0, j = 0, cnt = capacity;
        for (; i < n; i++) {
            cnt = capacity;
            while (cnt > 0 && j < m && passengers[j] <= buses[i]) {
                cnt--;
                j++;
            }
        }
        int res;
        j--;
        if (cnt > 0) {
            res = buses[n - 1];
        } else {
            res = passengers[j];
        }
        while (j >= 0 && passengers[j] == res) {
            res--;
            j--;
        }
        return res;
    }

}

性能

2390.从字符串中移除星号

目标

给你一个包含若干星号 * 的字符串 s 。

在一步操作中,你可以:

  • 选中 s 中的一个星号。
  • 移除星号 左侧 最近的那个 非星号 字符,并移除该星号自身。

返回移除 所有 星号之后的字符串。

注意:

  • 生成的输入保证总是可以执行题面中描述的操作。
  • 可以证明结果字符串是唯一的。

示例 1:

输入:s = "leet**cod*e"
输出:"lecoe"
解释:从左到右执行移除操作:
- 距离第 1 个星号最近的字符是 "leet**cod*e" 中的 't' ,s 变为 "lee*cod*e" 。
- 距离第 2 个星号最近的字符是 "lee*cod*e" 中的 'e' ,s 变为 "lecod*e" 。
- 距离第 3 个星号最近的字符是 "lecod*e" 中的 'd' ,s 变为 "lecoe" 。
不存在其他星号,返回 "lecoe" 。

示例 2:

输入:s = "erase*****"
输出:""
解释:整个字符串都会被移除,所以返回空字符串。

说明:

  • 1 <= s.length <= 10^5
  • s 由小写英文字母和星号 * 组成
  • s 可以执行上述操作

思路

移除字符串中的星号以及星号左侧的非星号字符。

直接模拟栈的行为即可,可以使用StringBuilder,遇到星号就删除最后一个字符。

deleteCharAt(index) 实际上调用的是 System.arraycopy(value, index+1, value, index, count-index-1); 将index后的数据前移了一位。这里删除的是最后一个字符,实际上就是将指针向前移了一位。那我们可以直接将指针向前移,省去这一系列的函数调用。

可以直接原地修改,定义一个指针 pi 同步增长,如果遇到 *, 指针 p 回退,否则将下标 i 对应的值写入当前 p 指向的位置。

代码


/**
 * @date 2024-09-14 8:56
 */
public class RemoveStars2390 {

    public String removeStars_v2(String s) {
        char[] chars = s.toCharArray();
        int n = chars.length;
        int p = 0;
        for (int i = 0; i < n; i++) {
            if (chars[i] == '*') {
                p--;
            } else {
                chars[p++] = chars[i];
            }
        }
        return new String(chars, 0, p);
    }

}

性能