1547.切棍子的最小成本

目标

有一根长度为 n 个单位的木棍,棍上从 0 到 n 标记了若干位置。例如,长度为 6 的棍子可以标记如下:

给你一个整数数组 cuts ,其中 cuts[i] 表示你需要将棍子切开的位置。

你可以按顺序完成切割,也可以根据需要更改切割的顺序。

每次切割的成本都是当前要切割的棍子的长度,切棍子的总成本是历次切割成本的总和。对棍子进行切割将会把一根木棍分成两根较小的木棍(这两根木棍的长度和就是切割前木棍的长度)。请参阅第一个示例以获得更直观的解释。

返回切棍子的 最小总成本 。

示例 1:

输入:n = 7, cuts = [1,3,4,5]
输出:16
解释:按 [1, 3, 4, 5] 的顺序切割的情况如下所示:
第一次切割长度为 7 的棍子,成本为 7 。第二次切割长度为 6 的棍子(即第一次切割得到的第二根棍子),第三次切割为长度 4 的棍子,最后切割长度为 3 的棍子。总成本为 7 + 6 + 4 + 3 = 20 。
而将切割顺序重新排列为 [3, 5, 1, 4] 后,总成本 = 16(如示例图中 7 + 4 + 3 + 2 = 16)。

示例 2:

输入:n = 9, cuts = [5,6,1,4,2]
输出:22
解释:如果按给定的顺序切割,则总成本为 25 。总成本 <= 25 的切割顺序很多,例如,[4, 6, 5, 2, 1] 的总成本 = 22,是所有可能方案中成本最小的。

说明:

  • 2 <= n <= 10^6
  • 1 <= cuts.length <= min(n - 1, 100)
  • 1 <= cuts[i] <= n - 1
  • cuts 数组中的所有整数都 互不相同

提示:

  • Build a dp array where dp[i][j] is the minimum cost to achieve all the cuts between i and j.
  • When you try to get the minimum cost between i and j, try all possible cuts k between them, dp[i][j] = min(dp[i][k] + dp[k][j]) + (j - i) for all possible cuts k between them.

思路

有一个长度为 n 的木棍,刻度从 0 ~ n,有一个整数数组 cutscuts[i] 表示需要在刻度 i 处进行切割,切割的成本为该刻度所在棍子的长度,求切割棍子的最小成本。

许多算法书上引入动态规划经常举的一个例子是钢条切割问题。已知特定长度钢条的价值,问怎样切可以使价值最大。而本题是给出必须要切的点,问按照什么顺序切成本最小。

定义 dp[i][j] 表示完成 (i, j) 之间所有切割点所需要的最小成本,dp[0][n] 就是答案。状态转移方程为 dp[i][j] = min(dp[i][k] + dp[k][j]) + j - i)。根据定义 dp 数组应该初始化为 0,因为无法切割时成本为 0。

但是由于切割点的范围太大 2 ~ 10^6,如果直接定义的话会超出内存限制。可以先将切割点排序,定义 ij 为切点的下标,切点个数 m 最大为 100,时间复杂度为 O(m^3)

考虑到切点本身不包含木棍的两个端点 0n,我们定义端点 endpoint 数组,将这两个端点加进来,dp[0][m - 1] 即为所求。状态转移方程为 dp[i][j] = min(dp[i][k] + dp[k][j]) + endpoint[j] - endpoint[i]

特别需要注意的是 dp 数组的遍历的顺序。当我们计算 dp[i][j] 时需要已经计算出 dp[k][j],枚举起点 i 应该倒序,因为 k > i,同理还需要计算出 dp[i][k],枚举终点 j 应该正序,因为 k > y。枚举 k 正序倒序都可以。

枚举 i,j 的先后顺序也是可以交换的。

代码


/**
 * @date 2024-11-11 10:07
 */
public class MinCost1547 {

    public int minCost(int n, int[] cuts) {
        Arrays.sort(cuts);
        int m = cuts.length;
        int[] endpoint = new int[m + 2];
        System.arraycopy(cuts, 0, endpoint, 1, m);
        endpoint[m + 1] = n;

        m = endpoint.length;
        int[][] dp = new int[m][m];

        for (int i = m - 3; i >= 0; i--) {
            for (int j = i + 2; j < m; j++) {
                int min = Integer.MAX_VALUE;
                for (int k = i + 1; k < j; k++) {
                    min = Math.min(dp[i][k] + dp[k][j], min);
                }
                dp[i][j] = min + endpoint[j] - endpoint[i];
            }
        }
        return dp[0][m - 1];
    }

}

性能

3235.判断矩形的两个角落是否可达

目标

给你两个正整数 xCorner 和 yCorner 和一个二维整数数组 circles ,其中 circles[i] = [xi, yi, ri] 表示一个圆心在 (xi, yi) 半径为 ri 的圆。

坐标平面内有一个左下角在原点,右上角在 (xCorner, yCorner) 的矩形。你需要判断是否存在一条从左下角到右上角的路径满足:路径 完全 在矩形内部,不会 触碰或者经过 任何 圆的内部和边界,同时 只 在起点和终点接触到矩形。

如果存在这样的路径,请你返回 true ,否则返回 false 。

示例 1:

输入:X = 3, Y = 4, circles = [[2,1,1]]
输出:true
解释:
黑色曲线表示一条从 (0, 0) 到 (3, 4) 的路径。

示例 2:

输入:X = 3, Y = 3, circles = [[1,1,2]]
输出:false
解释:
不存在从 (0, 0) 到 (3, 3) 的路径。

示例 3:

输入:X = 3, Y = 3, circles = [[2,1,1],[1,2,1]]
输出:false
解释:
不存在从 (0, 0) 到 (3, 3) 的路径。

示例 4:

输入:X = 4, Y = 4, circles = [[5,5,1]]
输出:true
解释:

说明:

  • 3 <= xCorner, yCorner <= 10^9
  • 1 <= circles.length <= 1000
  • circles[i].length == 3
  • 1 <= xi, yi, ri <= 10^9

思路

有一个以原点为左下顶点, [xCorner, yCorner] 为右上顶点的矩形,还有一些圆 circlescircles[i, j, r] 表示圆的圆心在 (i, j) 半径为 r。问是否存在一条从原点到 [xCorner, yCorner] 的路径,满足路径在矩形内部(不与矩形边界重合),且不触碰或经过任何园的内部与边界。

评论说这是史上分数最高的题目,周赛全球也没几个人做出来,直接放弃了。

代码

性能

3165.不包含相邻元素的子序列的最大和

目标

给你一个整数数组 nums 和一个二维数组 queries,其中 queries[i] = [posi, xi]。

对于每个查询 i,首先将 nums[posi] 设置为 xi,然后计算查询 i 的答案,该答案为 nums 中 不包含相邻元素 的 子序列 的 最大 和。

返回所有查询的答案之和。

由于最终答案可能非常大,返回其对 10^9 + 7 取余 的结果。

子序列 是指从另一个数组中删除一些或不删除元素而不改变剩余元素顺序得到的数组。

示例 1:

输入:nums = [3,5,9], queries = [[1,-2],[0,-3]]
输出:21
解释:
执行第 1 个查询后,nums = [3,-2,9],不包含相邻元素的子序列的最大和为 3 + 9 = 12。
执行第 2 个查询后,nums = [-3,-2,9],不包含相邻元素的子序列的最大和为 9 。

示例 2:

输入:nums = [0,-1], queries = [[0,-5]]
输出:0
解释:
执行第 1 个查询后,nums = [-5,-1],不包含相邻元素的子序列的最大和为 0(选择空子序列)。

说明:

  • 1 <= nums.length <= 5 * 10^4
  • -10^5 <= nums[i] <= 10^5
  • 1 <= queries.length <= 5 * 10^4
  • queries[i] == [posi, xi]
  • 0 <= posi <= nums.length - 1
  • -10^5 <= xi <= 10^5

思路

// todo

代码

性能

685.冗余连接II

目标

在本问题中,有根树指满足以下条件的 有向 图。该树只有一个根节点,所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节点都有且只有一个父节点,而根节点没有父节点。

输入一个有向图,该图由一个有着 n 个节点(节点值不重复,从 1 到 n)的树及一条附加的有向边构成。附加的边包含在 1 到 n 中的两个不同顶点间,这条附加的边不属于树中已存在的边。

结果图是一个以边组成的二维数组 edges 。 每个元素是一对 [ui, vi],用以表示 有向 图中连接顶点 ui 和顶点 vi 的边,其中 ui 是 vi 的一个父节点。

返回一条能删除的边,使得剩下的图是有 n 个节点的有根树。若有多个答案,返回最后出现在给定二维数组的答案。

示例 1:

输入:edges = [[1,2],[1,3],[2,3]]
输出:[2,3]

示例 2:

输入:edges = [[1,2],[2,3],[3,4],[4,1],[1,5]]
输出:[4,1]

说明:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ui, vi <= n

思路

有一颗 n 个节点的树,节点编号 1 ~ n。使用 edges 表示向树中两个没有直接连接的节点之间加一条边之后的边的集合,找出一条可以删除的边使得 edges 变为一颗有 n 个节点的树。如果有多种选择,返回 edges 中最后出现的那个,即下标最大的边。与 冗余连接 不同的是 edges有向边 的集合。

如果直接使用昨天无向图寻找环的做法会有两个问题:

  • 无法处理 a -> b, b -> a 的情况,因为在无向图中为了防止环,直接回避了这种情况
  • 并不是删去环上任意一条边都可以的,因为边是有向的,如果某个节点出现两个父节点,那么一定要删去以该节点为终点的边

官网题解使用的还是并查集。// todo

代码


/**
 * @date 2024-10-28 8:51
 */
public class FindRedundantDirectedConnection685 {

    List<Integer>[] g;
    Set<Integer> loop;
    List<Integer> path;
    int start;
    int end;

    public int[] findRedundantDirectedConnection(int[][] edges) {
        int n = edges.length;
        g = new List[n + 1];
        for (int i = 0; i <= n; i++) {
            g[i] = new ArrayList<>();
        }
        int[] degree = new int[n + 1];
        Set<Integer> e = new HashSet<>(n);
        int end = -1;
        int[] self = null;
        for (int[] edge : edges) {
            int from = edge[0];
            int to = edge[1];
            int fromto = from << 10 | to;
            int tofrom = to << 10 | from;
            if (e.contains(fromto)) {
                self = new int[]{from, to};
            }
            e.add(fromto);
            e.add(tofrom);
            g[from].add(to);
            g[to].add(from);
            if (degree[to] == 1) {
                end = to;
            } else {
                degree[to]++;
            }
        }

        if (self != null) {
            if (end == -1) {
                for (int i = n - 1; i >= 0; i--) {
                    if ((self[0] == edges[i][0] && edges[i][1] == self[1])
                            || (self[0] == edges[i][1] && edges[i][0] == self[1])) {
                        return edges[i];
                    }
                }
            } else {
                return new int[]{self[0] == end ? self[1] : self[0], end};
            }

        }

        loop = new HashSet<>(n);
        path = new ArrayList<>();
        loop.add(1);
        path.add(1);
        dfs(0, 1);
        loop = new HashSet<>();
        for (int i = path.size() - 1; i >= 0; i--) {
            loop.add(path.get(i));
            if (start == path.get(i)) {
                break;
            }
        }
        if (end == -1) {
            for (int i = n - 1; i >= 0; i--) {
                if (loop.contains(edges[i][0]) && loop.contains(edges[i][1])) {
                    return edges[i];
                }
            }
        } else {
            for (int i = n - 1; i >= 0; i--) {
                if (edges[i][1] == end && loop.contains(edges[i][0])) {
                    return edges[i];
                }
            }
        }

        return null;
    }

    private boolean dfs(int parent, int current) {
        for (Integer next : g[current]) {
            if (next == parent) {
                continue;
            }
            if (loop.contains(next)) {
                start = next;
                return true;
            } else {
                loop.add(next);
                path.add(next);
                if (dfs(current, next)) {
                    return true;
                }
                path.remove(path.size() - 1);
                loop.remove(next);
            }
        }
        return false;
    }

}

性能

3181.执行操作可获得的最大总奖励II

目标

给你一个整数数组 rewardValues,长度为 n,代表奖励的值。

最初,你的总奖励 x 为 0,所有下标都是 未标记 的。你可以执行以下操作 任意次 :

  • 从区间 [0, n - 1] 中选择一个 未标记 的下标 i。
  • 如果 rewardValues[i] 大于 你当前的总奖励 x,则将 rewardValues[i] 加到 x 上(即 x = x + rewardValues[i]),并 标记 下标 i。

以整数形式返回执行最优操作能够获得的 最大 总奖励。

示例 1:

输入:rewardValues = [1,1,3,3]
输出:4
解释:
依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。

示例 2:

输入:rewardValues = [1,6,4,3,2]
输出:11
解释:
依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。

说明:

  • 1 <= rewardValues.length <= 5 * 10^4
  • 1 <= rewardValues[i] <= 5 * 10^4

思路

与昨天的题相比,数据范围变大了。

// todo

代码

性能

3193.统计逆序对的数目

目标

给你一个整数 n 和一个二维数组 requirements ,其中 requirements[i] = [endi, cnti] 表示这个要求中的末尾下标和 逆序对 的数目。

整数数组 nums 中一个下标对 (i, j) 如果满足以下条件,那么它们被称为一个 逆序对 :

  • i < j 且 nums[i] > nums[j]

请你返回 [0, 1, 2, ..., n - 1] 的 排列 perm 的数目,满足对 所有 的 requirements[i] 都有 perm[0..endi] 恰好有 cnti 个逆序对。

由于答案可能会很大,将它对 10^9 + 7 取余 后返回。

示例 1:

输入:n = 3, requirements = [[2,2],[0,0]]
输出:2
解释:
两个排列为:
[2, 0, 1]
前缀 [2, 0, 1] 的逆序对为 (0, 1) 和 (0, 2) 。
前缀 [2] 的逆序对数目为 0 个。
[1, 2, 0]
前缀 [1, 2, 0] 的逆序对为 (0, 2) 和 (1, 2) 。
前缀 [1] 的逆序对数目为 0 个。

示例 2:

输入:n = 3, requirements = [[2,2],[1,1],[0,0]]
输出:1
解释:
唯一满足要求的排列是 [2, 0, 1] :
前缀 [2, 0, 1] 的逆序对为 (0, 1) 和 (0, 2) 。
前缀 [2, 0] 的逆序对为 (0, 1) 。
前缀 [2] 的逆序对数目为 0 。

示例 3:

输入:n = 2, requirements = [[0,0],[1,0]]
输出:1
解释:
唯一满足要求的排列为 [0, 1] :
前缀 [0] 的逆序对数目为 0 。
前缀 [0, 1] 的逆序对为 (0, 1) 。

说明:

  • 2 <= n <= 300
  • 1 <= requirements.length <= n
  • requirements[i] = [endi, cnti]
  • 0 <= endi <= n - 1
  • 0 <= cnti <= 400
  • 输入保证至少有一个 i 满足 endi == n - 1 。
  • 输入保证所有的 endi 互不相同。

思路

数组 nums 的每一个子数组 [0, endi] 有一个 cnti,求这些子数组的排列中逆序对个数恰好为对应的 cnti 的个数。注意同一个排列需要满足所有的要求。

// todo

代码

性能

3171.找到按位或最接近K的子数组

目标

给你一个数组 nums 和一个整数 k 。你需要找到 nums 的一个 子数组,满足子数组中所有元素按位或运算 OR 的值与 k 的 绝对差 尽可能 小 。换言之,你需要选择一个子数组 nums[l..r] 满足 |k - (nums[l] OR nums[l + 1] ... OR nums[r])| 最小。

请你返回 最小 的绝对差值。

子数组 是数组中连续的 非空 元素序列。

示例 1:

输入:nums = [1,2,4,5], k = 3
输出:0
解释:
子数组 nums[0..1] 的按位 OR 运算值为 3 ,得到最小差值 |3 - 3| = 0 。

示例 2:

输入:nums = [1,3,1,3], k = 2
输出:1
解释:
子数组 nums[1..1] 的按位 OR 运算值为 3 ,得到最小差值 |3 - 2| = 1 。

示例 3:

输入:nums = [1], k = 10
输出:9
解释:
只有一个子数组,按位 OR 运算值为 1 ,得到最小差值 |10 - 1| = 9 。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^9
  • 1 <= k <= 10^9

思路

寻找子数组使子数组元素按位或运算的值 or 尽可能地接近 k,即求 |k - or| 的最小值。

暴力求解的基本逻辑是,外层枚举右端点,内层从后向前枚举左端点,使用 nums[j] 保存 子数组 [j, i] 的或值,通过判断 (nums[j] | right) != nums[j] 决定 right 是否对或值有贡献,如果没有贡献,那么可以不再继续向前枚举左端点,因为前面的或值已经累加了后面的值,如果对子数组 [j, i] 的或值没有贡献,那么对前面的 [j - 1, i] 包含了 [j, i] 的或值更没有贡献。

代码


/**
 * @date 2024-10-09 8:59
 */
public class MinimumDifference3171 {

    public int minimumDifference_v1(int[] nums, int k) {
        int n = nums.length;
        int res = Integer.MAX_VALUE;
        for (int i = 0; i < n; i++) {
            int right = nums[i];
            for (int j = i - 1; j >= 0 && ((nums[j] | right) != nums[j]); j--) {
                nums[j] |= right;
                res = Math.min(res, Math.abs(nums[j] - k));
            }
            res = Math.min(res, Math.abs(right - k));
        }
        return res;
    }

}

性能

871.最低加油次数

目标

汽车从起点出发驶向目的地,该目的地位于出发位置东面 target 英里处。

沿途有加油站,用数组 stations 表示。其中 stations[i] = [positioni, fueli] 表示第 i 个加油站位于出发位置东面 positioni 英里处,并且有 fueli 升汽油。

假设汽车油箱的容量是无限的,其中最初有 startFuel 升燃料。它每行驶 1 英里就会用掉 1 升汽油。当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。

为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1 。

注意:如果汽车到达加油站时剩余燃料为 0,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0,仍然认为它已经到达目的地。

示例 1:

输入:target = 1, startFuel = 1, stations = []
输出:0
解释:可以在不加油的情况下到达目的地。

示例 2:

输入:target = 100, startFuel = 1, stations = [[10,100]]
输出:-1
解释:无法抵达目的地,甚至无法到达第一个加油站。

示例 3:

输入:target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]]
输出:2
解释:
出发时有 10 升燃料。
开车来到距起点 10 英里处的加油站,消耗 10 升燃料。将汽油从 0 升加到 60 升。
然后,从 10 英里处的加油站开到 60 英里处的加油站(消耗 50 升燃料),
并将汽油从 10 升加到 50 升。然后开车抵达目的地。
沿途在两个加油站停靠,所以返回 2 。

说明:

  • 1 <= target, startFuel <= 10^9
  • 0 <= stations.length <= 500
  • 1 <= positioni < positioni+1 < target
  • 1 <= fueli < 10^9

思路

已知汽车油耗为 1 英里/升,现在想要开车前往 target 英里外的目的地,出发时车中有 startFuel 升油,沿途有 stations.length 个加油站,stations[i][0] 表示加油站 i 距出发地的距离,stations[i][1] 表示加油站 i 的汽油总量。假设汽车油箱无限大,求到达目的地的最少加油次数,如果无法到达返回 -1

可以将出发点、加油站、目的地画到数轴上,由于油耗为 1 英里/升,有多少升油就可以到达多远的距离。那么问题转化为从 n 个加油站中选取最少的个数,使油箱油量大于等于 target。要使选择的加油站最少,那么应该首选油量多的加油站,前提是能够抵达该加油站。我们可以使用大顶堆维护加油站油量,将能够抵达的加油站放入其中,然后将堆顶的油加入油箱,将新的能够抵达的加油站放入堆中,直到油箱中的油量大于等于 target

代码


/**
 * @date 2024-10-07 21:09
 */
public class MinRefuelStops871 {

    public int minRefuelStops(int target, int startFuel, int[][] stations) {
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a);
        int n = stations.length;
        int i = 0;
        int res = 0;
        int fuel = startFuel;
        while (fuel < target) {
            while (i < n && fuel >= stations[i][0]) {
                q.offer(stations[i++][1]);
            }
            if (!q.isEmpty()) {
                fuel += q.poll();
                res++;
                if (fuel >= target) {
                    return res;
                }
            } else if (i == n || fuel < stations[i][0]) {
                // 没有剩余的加油站或者无法抵达
                return -1;
            }
        }
        return res;
    }

}

性能

1928.规定时间内到达终点的最小花费

目标

一个国家有 n 个城市,城市编号为 0 到 n - 1 ,题目保证 所有城市 都由双向道路 连接在一起 。道路由二维整数数组 edges 表示,其中 edges[i] = [xi, yi, timei] 表示城市 xi 和 yi 之间有一条双向道路,耗费时间为 timei 分钟。两个城市之间可能会有多条耗费时间不同的道路,但是不会有道路两头连接着同一座城市。

每次经过一个城市时,你需要付通行费。通行费用一个长度为 n 且下标从 0 开始的整数数组 passingFees 表示,其中 passingFees[j] 是你经过城市 j 需要支付的费用。

一开始,你在城市 0 ,你想要在 maxTime 分钟以内 (包含 maxTime 分钟)到达城市 n - 1 。旅行的 费用 为你经过的所有城市 通行费之和 (包括 起点和终点城市的通行费)。

给你 maxTime,edges 和 passingFees ,请你返回完成旅行的 最小费用 ,如果无法在 maxTime 分钟以内完成旅行,请你返回 -1 。

示例 1:

输入:maxTime = 30, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3]
输出:11
解释:最优路径为 0 -> 1 -> 2 -> 5 ,总共需要耗费 30 分钟,需要支付 11 的通行费。

示例 2:

输入:maxTime = 29, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3]
输出:48
解释:最优路径为 0 -> 3 -> 4 -> 5 ,总共需要耗费 26 分钟,需要支付 48 的通行费。
你不能选择路径 0 -> 1 -> 2 -> 5 ,因为这条路径耗费的时间太长。

示例 3:

输入:maxTime = 25, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3]
输出:-1
解释:无法在 25 分钟以内从城市 0 到达城市 5 。

说明:

  • 1 <= maxTime <= 1000
  • n == passingFees.length
  • 2 <= n <= 1000
  • n - 1 <= edges.length <= 1000
  • 0 <= xi, yi <= n - 1
  • 1 <= timei <= 1000
  • 1 <= passingFees[j] <= 1000
  • 图中两个节点之间可能有多条路径。
  • 图中不含有自环。

思路

// todo

代码

性能

2286.以组为单位订音乐会的门票

目标

一个音乐会总共有 n 排座位,编号从 0 到 n - 1 ,每一排有 m 个座椅,编号为 0 到 m - 1 。你需要设计一个买票系统,针对以下情况进行座位安排:

  • 同一组的 k 位观众坐在 同一排座位,且座位连续 。
  • k 位观众中 每一位 都有座位坐,但他们 不一定 坐在一起。

由于观众非常挑剔,所以:

  • 只有当一个组里所有成员座位的排数都 小于等于 maxRow ,这个组才能订座位。每一组的 maxRow 可能 不同 。
  • 如果有多排座位可以选择,优先选择 最小 的排数。如果同一排中有多个座位可以坐,优先选择号码 最小 的。

请你实现 BookMyShow 类:

  • BookMyShow(int n, int m) ,初始化对象,n 是排数,m 是每一排的座位数。
  • int[] gather(int k, int maxRow) 返回长度为 2 的数组,表示 k 个成员中 第一个座位 的排数和座位编号,这 k 位成员必须坐在 同一排座位,且座位连续 。换言之,返回最小可能的 r 和 c 满足第 r 排中 [c, c + k - 1] 的座位都是空的,且 r <= maxRow 。如果 无法 安排座位,返回 [] 。
  • boolean scatter(int k, int maxRow) 如果组里所有 k 个成员 不一定 要坐在一起的前提下,都能在第 0 排到第 maxRow 排之间找到座位,那么请返回 true 。这种情况下,每个成员都优先找排数 最小 ,然后是座位编号最小的座位。如果不能安排所有 k 个成员的座位,请返回 false 。

示例 1:

输入:
["BookMyShow", "gather", "gather", "scatter", "scatter"]
[[2, 5], [4, 0], [2, 0], [5, 1], [5, 1]]
输出:
[null, [0, 0], [], true, false]

解释:
BookMyShow bms = new BookMyShow(2, 5); // 总共有 2 排,每排 5 个座位。
bms.gather(4, 0); // 返回 [0, 0]
                  // 这一组安排第 0 排 [0, 3] 的座位。
bms.gather(2, 0); // 返回 []
                  // 第 0 排只剩下 1 个座位。
                  // 所以无法安排 2 个连续座位。
bms.scatter(5, 1); // 返回 True
                   // 这一组安排第 0 排第 4 个座位和第 1 排 [0, 3] 的座位。
bms.scatter(5, 1); // 返回 False
                   // 总共只剩下 1 个座位。

说明:

  • 1 <= n <= 5 * 10^4
  • 1 <= m, k <= 10^9
  • 0 <= maxRow <= n - 1
  • gather 和 scatter 总 调用次数不超过 5 * 10^4 次。

思路

// todo 今天没时间做了

代码

性能