3145.大数组元素的乘积

目标

一个非负整数 x强数组 指的是满足元素为 2 的幂且元素总和为 x 的最短有序数组。下表说明了如何确定 强数组 的示例。可以证明,x 对应的强数组是独一无二的。

数字 二进制表示 强数组
1 00001 [1]
8 01000 [8]
10 01010 [2, 8]
13 01101 [1, 4, 8]
23 10111 [1, 2, 4, 16]

我们将每一个升序的正整数 i (即1,2,3等等)的 强数组 连接得到数组 big_numsbig_nums 开始部分为 [1, 2, 1, 2, 4, 1, 4, 2, 4, 1, 2, 4, 8, ...]

给你一个二维整数数组 queries ,其中 queries[i] = [fromi, toi, modi] ,你需要计算 (big_nums[fromi] * big_nums[fromi + 1] * ... * big_nums[toi]) % modi

请你返回一个整数数组 answer ,其中 answer[i] 是第 i 个查询的答案。

示例 1:

输入:queries = [[1,3,7]]
输出:[4]
解释:
只有一个查询。
big_nums[1..3] = [2,1,2] 。它们的乘积为 4。结果为 4 % 7 = 4。

示例 2:

输入:queries = [[2,5,3],[7,7,4]]
输出:[2,2]
解释:
有两个查询。
第一个查询:big_nums[2..5] = [1,2,4,1] 。它们的乘积为 8 。结果为 8 % 3 = 2。
第二个查询:big_nums[7] = 2 。结果为 2 % 4 = 2。

说明:

  • 1 <= queries.length <= 500
  • queries[i].length == 3
  • 0 <= queries[i][0] <= queries[i][1] <= 10^15
  • 1 <= queries[i][2] <= 10^5

思路

// todo

代码

性能

3154.到达第 K 级台阶的方案数

目标

给你有一个 非负 整数 k 。有一个无限长度的台阶,最低 一层编号为 0 。

Alice 有一个整数 jump ,一开始值为 0 。Alice 从台阶 1 开始,可以使用 任意 次操作,目标是到达第 k 级台阶。假设 Alice 位于台阶 i ,一次 操作 中,Alice 可以:

  • 向下走一级到 i - 1 ,但该操作 不能 连续使用,如果在台阶第 0 级也不能使用。
  • 向上走到台阶 i + 2^jump 处,然后 jump 变为 jump + 1 。

请你返回 Alice 到达台阶 k 处的总方案数。

注意,Alice 可能到达台阶 k 处后,通过一些操作重新回到台阶 k 处,这视为不同的方案。

示例 1:

输入:k = 0
输出:2
解释:
2 种到达台阶 0 的方案为:
- Alice 从台阶 1 开始。
    执行第一种操作,从台阶 1 向下走到台阶 0 。
- Alice 从台阶 1 开始。
    执行第一种操作,从台阶 1 向下走到台阶 0 。
    执行第二种操作,向上走 20 级台阶到台阶 1 。
    执行第一种操作,从台阶 1 向下走到台阶 0 。

示例 2:

输入:k = 1
输出:4
解释:

4 种到达台阶 1 的方案为:
- Alice 从台阶 1 开始,已经到达台阶 1 。
- Alice 从台阶 1 开始。
    执行第一种操作,从台阶 1 向下走到台阶 0 。
    执行第二种操作,向上走 20 级台阶到台阶 1 。
- Alice 从台阶 1 开始。
    执行第二种操作,向上走 20 级台阶到台阶 2 。
    执行第一种操作,向下走 1 级台阶到台阶 1 。
- Alice 从台阶 1 开始。
    执行第一种操作,从台阶 1 向下走到台阶 0 。
    执行第二种操作,向上走 20 级台阶到台阶 1 。
    执行第一种操作,向下走 1 级台阶到台阶 0 。
    执行第二种操作,向上走 21 级台阶到台阶 2 。
    执行第一种操作,向下走 1 级台阶到台阶 1 。

说明:

0 <= k <= 10^9

思路

//todo

代码

性能

552.学生出勤记录II

目标

可以用字符串表示一个学生的出勤记录,其中的每个字符用来标记当天的出勤情况(缺勤、迟到、到场)。记录中只含下面三种字符:

  • 'A':Absent,缺勤
  • 'L':Late,迟到
  • 'P':Present,到场

如果学生能够 同时 满足下面两个条件,则可以获得出勤奖励:

  • 按 总出勤 计,学生缺勤('A')严格 少于两天。
  • 学生 不会 存在 连续 3 天或 连续 3 天以上的迟到('L')记录。

给你一个整数 n ,表示出勤记录的长度(次数)。请你返回记录长度为 n 时,可能获得出勤奖励的记录情况 数量 。答案可能很大,所以返回对 10^9 + 7 取余 的结果。

示例 1:

输入:n = 2
输出:8
解释:
有 8 种长度为 2 的记录将被视为可奖励:
"PP" , "AP", "PA", "LP", "PL", "AL", "LA", "LL" 
只有"AA"不会被视为可奖励,因为缺勤次数为 2 次(需要少于 2 次)。

示例 2:

输入:n = 1
输出:3

示例 3:

输入:n = 10101
输出:183236316

说明:

  • 1 <= n <= 10^5

思路

使用 A L P 三种字符组成长度为 n 的字符串,要求字符串中最多包含一个 'A',并且不能连续出现三个及以上的 'L',问满足条件的字符串有多少个。

很明显需要使用动态规划求解。定义状态 dp[i][hadAbsent][ithState] 表示长度为i,以ithState(0:L; 1:P; 2:A)结尾,hadAbsent(0 ~ i-1,包含1/不包含0)'A'的字符串的个数。

状态转移方程为

  • dp[i][0][0] = dp[i-2][0][0] + 2*dp[i-2][0][1] LPL PPL PLL
  • dp[i][0][1] = dp[i-1][0][0] + dp[i-1][0][1] LP PP
  • dp[i][0][2] = dp[i-1][0][0] + dp[i-1][0][1] LA PA
  • dp[i][1][0] = dp[i-2][1][0] + 2*dp[i-2][1][1] + 2*dp[i-2][0][2] + dp[i-1][0][2] (A)LPL (A)PPL (A)PLL ALL APL AL
  • dp[i][1][1] = dp[i-1][1][0] + dp[i-1][1][1] + dp[i-1][0][2] (A)LP (A)PP AP

初始条件需要提前计算:

  • dp[0][0][0] = 1; L
  • dp[0][0][1] = 1; P
  • dp[0][0][2] = 1; A
  • dp[1][0][0] = 2; LL PL
  • dp[1][0][1] = 2; LP PP
  • dp[1][0][2] = 2; LA PA
  • dp[1][1][0] = 1; AL
  • dp[1][1][1] = 1; AP

模运算(取余)满足以下规律:

  • (a + b + c) % mod = ((a % mod) + (b % mod) + (c % mod)) % mod
  • (a * b * c) % mod = ((a % mod) * (b % mod) * (c % mod)) % mod

代码

/**
 * @date 2024-08-19 9:53
 */
public class CheckRecord552 {
    private static final int MOD = 1000000007;

    public int checkRecord(int n) {
        if (n == 1) {
            return 3;
        }
        long[][][] dp = new long[n][2][3];
        dp[0][0][0] = 1;
        dp[0][0][1] = 1;
        dp[0][0][2] = 1;

        dp[1][0][0] = 2;
        dp[1][0][1] = 2;
        dp[1][0][2] = 2;
        dp[1][1][0] = 1;
        dp[1][1][1] = 1;

        for (int i = 2; i < n; i++) {
            int pre = i - 1;
            int prepre = i - 2;
            dp[i][0][0] = (dp[prepre][0][0] + 2 * dp[prepre][0][1]) % MOD;
            dp[i][0][1] = (dp[pre][0][0] + dp[pre][0][1]) % MOD;
            dp[i][0][2] = (dp[pre][0][0] + dp[pre][0][1]) % MOD;
            dp[i][1][0] = (dp[prepre][1][0] + 2 * dp[prepre][1][1] + 2 * dp[prepre][0][2] + dp[pre][0][2]) % MOD;
            dp[i][1][1] = (dp[pre][1][0] + dp[pre][1][1] + dp[pre][0][2]) % MOD;
        }
        return (int) ((dp[n - 1][0][0] + dp[n - 1][0][1] + dp[n - 1][0][2] + dp[n - 1][1][0] + dp[n - 1][1][1]) % MOD);
    }

}

性能

2940.找到Alice和Bob可以相遇的建筑

目标

给你一个下标从 0 开始的正整数数组 heights ,其中 heights[i] 表示第 i 栋建筑的高度。

如果一个人在建筑 i ,且存在 i < j 的建筑 j 满足 heights[i] < heights[j] ,那么这个人可以移动到建筑 j 。

给你另外一个数组 queries ,其中 queries[i] = [ai, bi] 。第 i 个查询中,Alice 在建筑 ai ,Bob 在建筑 bi 。

请你能返回一个数组 ans ,其中 ans[i] 是第 i 个查询中,Alice 和 Bob 可以相遇的 最左边的建筑 。如果对于查询 i ,Alice 和 Bob 不能相遇,令 ans[i] 为 -1 。

示例 1:

输入:heights = [6,4,8,5,2,7], queries = [[0,1],[0,3],[2,4],[3,4],[2,2]]
输出:[2,5,-1,5,2]
解释:第一个查询中,Alice 和 Bob 可以移动到建筑 2 ,因为 heights[0] < heights[2] 且 heights[1] < heights[2] 。
第二个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[0] < heights[5] 且 heights[3] < heights[5] 。
第三个查询中,Alice 无法与 Bob 相遇,因为 Alice 不能移动到任何其他建筑。
第四个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[3] < heights[5] 且 heights[4] < heights[5] 。
第五个查询中,Alice 和 Bob 已经在同一栋建筑中。
对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。
对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

示例 2:

输入:heights = [5,3,8,2,6,1,4,6], queries = [[0,7],[3,5],[5,2],[3,0],[1,6]]
输出:[7,6,-1,4,6]
解释:第一个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[0] < heights[7] 。
第二个查询中,Alice 和 Bob 可以移动到建筑 6 ,因为 heights[3] < heights[6] 且 heights[5] < heights[6] 。
第三个查询中,Alice 无法与 Bob 相遇,因为 Bob 不能移动到任何其他建筑。
第四个查询中,Alice 和 Bob 可以移动到建筑 4 ,因为 heights[3] < heights[4] 且 heights[0] < heights[4] 。
第五个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[1] < heights[6] 。
对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。
对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

说明:

  • 1 <= heights.length <= 5 * 10^4
  • 1 <= heights[i] <= 10^9
  • 1 <= queries.length <= 5 * 10^4
  • queries[i] = [ai, bi]
  • 0 <= ai, bi <= heights.length - 1

思路

有一个数组 heights 表示建筑的高度,另有一个二维数组,其元素 queries[i] = [ai, bi] 表示 Alice 和 Bob 当前所在建筑的下标,规定可以从左向右移动到比当前建筑高的建筑,求 Alice 和 Bob 可以相遇的建筑下标,如果有多个取最左侧的那个。

这个问题的关键在于求出 [max(ai, bi), n) 范围内,高度大于等于 max(heights[ai], heights[bi]) 的建筑下标最小值。暴力求解会超时,考虑使用单调栈,记录下一个高度大于当前建筑的下标。类似于跳表,从较高的建筑出发,查找第一个下标大于等于max(ai, bi)的建筑即可。它存在的问题是如果(ai, bi)之间有极大值,后面还得遍历查找。最坏的情况下,数据依次递增,而满足条件的值在最后,这时退化为暴力求解。

碰巧过了。// todo 研究一下官网题解

代码

/**
 * @date 2024-08-10 19:56
 */
public class LeftmostBuildingQueries2940 {

    public int[] leftmostBuildingQueries_v1(int[] heights, int[][] queries) {
        int num = heights.length;
        int[] next = new int[num];
        Arrays.fill(next, -1);
        ArrayDeque<Integer> stack = new ArrayDeque<>();
        // 单调栈
        for (int i = 0; i < num; i++) {
            while (!stack.isEmpty() && heights[i] > heights[stack.peek()]) {
                next[stack.pop()] = i;
            }
            stack.push(i);
        }
        int n = queries.length;
        int[] res = new int[n];
        Arrays.fill(res, -1);
        for (int i = 0; i < n; i++) {
            int a = queries[i][0];
            int b = queries[i][1];
            if (a == b) {
                res[i] = a;
                continue;
            } else if (a < b && heights[a] < heights[b]) {
                res[i] = b;
                continue;
            } else if (a > b && heights[a] > heights[b]) {
                res[i] = a;
                continue;
            }
            int leftNext = Math.min(a, b);
            int rightNext = Math.max(a, b);
            if (next[leftNext] > rightNext || next[leftNext] == -1) {
                res[i] = next[leftNext];
                continue;
            }
            int height = Math.max(heights[a], heights[b]);
            while (next[rightNext] != -1) {
                if (heights[next[rightNext]] > height) {
                    res[i] = next[rightNext];
                    break;
                } else {
                    rightNext = next[rightNext];
                }
            }
        }
        return res;
    }
}

性能

3129.找出所有稳定的二进制数组 I/II

目标

给你 3 个正整数 zero ,one 和 limit 。

一个 二进制数组 arr 如果满足以下条件,那么我们称它是 稳定的 :

  • 0 在 arr 中出现次数 恰好 为 zero 。
  • 1 在 arr 中出现次数 恰好 为 one 。
  • arr 中每个长度超过 limit 的 子数组 都 同时 包含 0 和 1 。

请你返回 稳定 二进制数组的 总 数目。

由于答案可能很大,将它对 10^9 + 7 取余 后返回。

示例 1:

输入:zero = 1, one = 1, limit = 2
输出:2
解释:
两个稳定的二进制数组为 [1,0] 和 [0,1] ,两个数组都有一个 0 和一个 1 ,且没有子数组长度大于 2 。

示例 2:

输入:zero = 1, one = 2, limit = 1
输出:1
解释:
唯一稳定的二进制数组是 [1,0,1] 。
二进制数组 [1,1,0] 和 [0,1,1] 都有长度为 2 且元素全都相同的子数组,所以它们不稳定。

示例 3:

输入:zero = 3, one = 3, limit = 2
输出:14
解释:
所有稳定的二进制数组包括 [0,0,1,0,1,1] ,[0,0,1,1,0,1] ,[0,1,0,0,1,1] ,[0,1,0,1,0,1] ,[0,1,0,1,1,0] ,[0,1,1,0,0,1] ,[0,1,1,0,1,0] ,[1,0,0,1,0,1] ,[1,0,0,1,1,0] ,[1,0,1,0,0,1] ,[1,0,1,0,1,0] ,[1,0,1,1,0,0] ,[1,1,0,0,1,0] 和 [1,1,0,1,0,0] 。

说明:

  • 1 <= zero, one, limit <= 200 medium
  • 1 <= zero, one, limit <= 1000 hard

提示:

  • Let dp[a][b][c = 0/1][d] be the number of stable arrays with exactly a 0s, b 1s and consecutive d value of c’s at the end.
  • Try each case by appending a 0/1 at last to get the inductions.

思路

zero 个 0 和 one 个 1 组成的数组,满足所有长度大于 limit 的子数组同时包含0和1的数组有多少个。

首先考虑由 zero 个 0 和 one 个 1 组成的数组有多少个。C(zero + one, zero) 从 zero + one 个位置中选出 zero 或者 one 个。根据题目中的范围 1 ~ 200,C(400, 200) 大概在 10^119 ~ 10^120之间。不可能枚举所有组合,更别提枚举每种组合的所有子数组了。我们必须自底向上寻求解决方案。

如何保证 limit + 1 的窗口内一定包含 0 和 1 呢?

看了提示说是四维动态规划,直接放弃了。思考过程中卡住的点是不会构建满足条件的解,想不出怎样才能让子数组中同时包含 0 和 1。其实只要保证不出现连续 limit + 1 个 0 或 1 就可以了。想到了动态规划,但是不知道如何进行状态转移。

代码

性能

600.不含连续1的非负整数

目标

给定一个正整数 n ,请你统计在 [0, n] 范围的非负整数中,有多少个整数的二进制表示中不存在 连续的 1 。

示例 1:

输入: n = 5
输出: 5
解释: 
下面列出范围在 [0, 5] 的非负整数与其对应的二进制表示:
0 : 0
1 : 1
2 : 10
3 : 11
4 : 100
5 : 101
其中,只有整数 3 违反规则(有两个连续的 1 ),其他 5 个满足规则。

示例 2:

输入: n = 1
输出: 2

示例 3:

输入: n = 2
输出: 3

说明:

  • 1 <= n <= 10^9

思路

给定一个正整数n,求 [0, n] 范围内整数的二进制表示中不含连续1的整数个数。

由于n最大10^9,如果挨个判断整数是否含连续的bit 1,实际复杂度为O(31n),超时。

既然暴力解不行只能考虑其它方法。分析n的二进制表示,将问题转换为一定限制条件下的排列组合问题。求得二进制表示之后可以使用dfs来计算组合数。如果不使用记忆化搜索同样会超时,这里使用状态压缩来记录重复的子问题。状态指方法参数的组合,如果cur为1,则将高位置1与index相与,第二个维度0表示不可以将0改为1,1表示可以将0改为1。

官网题解使用的是递推。

代码

/**
 * @date 2024-08-05 10:20
 */
public class FindIntegers600 {

    public int findIntegers(int n) {
        List<Integer> bitmap = new ArrayList<>(32);
        while (n > 0) {
            bitmap.add(n & 1);
            n >>= 1;
        }
        int[][] mem = new int[(1 << 5) | (bitmap.size() - 1)][2];
        return dfs(0, bitmap, bitmap.size() - 1, false, mem);
    }

    public int dfs(int pre, List<Integer> bitmap, int index, boolean zeroToOne, int[][] mem) {
        int cur = bitmap.get(index);
        if (index == 0) {
            return pre == 0 && (cur == 1 || zeroToOne) ? 2 : 1;
        }
        int res = 0;
        index--;
        int size = bitmap.size();
        int key = (1 << 5) | index;
        int zto = zeroToOne ? 1 : 0;
        if (pre == 1 && cur == 1) {
            // 如果前一个是1,当前也是1,将1改为0,允许后续的0改为1
            if (mem[index][1] == 0) {
                mem[index][1] = dfs(cur - 1, bitmap, index, true, mem);
            }
            res = mem[index][1];
        } else if (pre == 0 && cur == 1) {
            // 如果前一个是0,当前是1,将1改为0,允许后续的0改为1,或者当前不变,后续是否允许0变1取决于zeroToOne
            if (mem[index][1] == 0) {
                mem[index][1] = dfs(cur - 1, bitmap, index, true, mem);
            }
            if (mem[key][zto] == 0) {
                mem[key][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][1] + mem[key][zto];
        } else if (pre == 0 && cur == 0) {
            // 如果前一个是0,当前是0,当前不变,后续是否允0变1许取决于zeroToOne,如果当前zeroToOne为true,将0改为1
            if (mem[index][zto] == 0) {
                mem[index][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][zto];
            if (zeroToOne) {
                if (mem[key][zto] == 0) {
                    mem[key][zto] = dfs(cur + 1, bitmap, index, zeroToOne, mem);
                }
                res += mem[key][zto];
            }
        } else {
            // 如果前一个是1,当前是0,当前不变,后续是否允许0变1取决于zeroToOne
            if (mem[index][zto] == 0) {
                mem[index][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][zto];
        }
        return res;
    }

}

性能

3098.求出所有子序列的能量和

目标

给你一个长度为 n 的整数数组 nums 和一个 正 整数 k 。

一个 子序列 的 能量 定义为子序列中 任意 两个元素的差值绝对值的 最小值 。

请你返回 nums 中长度 等于 k 的 所有 子序列的 能量和 。

由于答案可能会很大,将答案对 10^9 + 7 取余 后返回。

示例 1:

输入:nums = [1,2,3,4], k = 3
输出:4
解释:
nums 中总共有 4 个长度为 3 的子序列:[1,2,3] ,[1,3,4] ,[1,2,4] 和 [2,3,4] 。能量和为 |2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4 。

示例 2:

输入:nums = [2,2], k = 2
输出:0
解释:
nums 中唯一一个长度为 2 的子序列是 [2,2] 。能量和为 |2 - 2| = 0 。

示例 3:

输入:nums = [4,3,-1], k = 2
输出:10
解释:
nums 总共有 3 个长度为 2 的子序列:[4,3] ,[4,-1] 和 [3,-1] 。能量和为 |4 - 3| + |4 - (-1)| + |3 - (-1)| = 10 。

说明:

  • 2 <= n == nums.length <= 50
  • -10^8 <= nums[i] <= 10^8
  • 2 <= k <= n

思路

定义数组子序列的能量为子序列中任意两个元素差的绝对值的最小值,求数组长度为k的子序列的能量和。

首先思考,数组 nums 长度为n的子序列有多少?根据每一个元素是否在序列中可知有 2^n种可能。n 最大为50,2^50 = 1125899906842624。那么长度为k的子序列有多少? C(n,k) = n!/(k!(n-k)!),当 k=2 时,有 n(n-1)/2 个子序列。

只能考虑动态规划,自底向上地求解。我们可以使用状态压缩来表示子序列,当状态发生转移的时候该如何处理呢?假设我们知道了某k-1子序列的能量,那么再增加一个元素能量会如何变化?比如子序列1,3,6,10,能量为2,再加入一个元素9,能量变为1。还是需要遍历子序列的。那么我们可以根据压缩的状态仅遍历哪些bit位为1的元素。剩下的问题就是如何遍历子序列了。

看了提示,首先要排序,这样差值最小的就两两相邻。刚开始的时候我也在想能不能排序,虽然子序列要保持相对顺序,但本题考虑的是子序列中绝对值差最小的,与顺序无关。

// todo

代码

性能

2959.关闭分部的可行集合数目

目标

一个公司在全国有 n 个分部,它们之间有的有道路连接。一开始,所有分部通过这些道路两两之间互相可以到达。

公司意识到在分部之间旅行花费了太多时间,所以它们决定关闭一些分部(也可能不关闭任何分部),同时保证剩下的分部之间两两互相可以到达且最远距离不超过 maxDistance 。

两个分部之间的 距离 是通过道路长度之和的 最小值 。

给你整数 n ,maxDistance 和下标从 0 开始的二维整数数组 roads ,其中 roads[i] = [ui, vi, wi] 表示一条从 ui 到 vi 长度为 wi的 无向 道路。

请你返回关闭分部的可行方案数目,满足每个方案里剩余分部之间的最远距离不超过 maxDistance。

注意,关闭一个分部后,与之相连的所有道路不可通行。

注意,两个分部之间可能会有多条道路。

示例 1:

输入:n = 3, maxDistance = 5, roads = [[0,1,2],[1,2,10],[0,2,10]]
输出:5
解释:可行的关闭分部方案有:
- 关闭分部集合 [2] ,剩余分部为 [0,1] ,它们之间的距离为 2 。
- 关闭分部集合 [0,1] ,剩余分部为 [2] 。
- 关闭分部集合 [1,2] ,剩余分部为 [0] 。
- 关闭分部集合 [0,2] ,剩余分部为 [1] 。
- 关闭分部集合 [0,1,2] ,关闭后没有剩余分部。
总共有 5 种可行的关闭方案。

示例 2:

输入:n = 3, maxDistance = 5, roads = [[0,1,20],[0,1,10],[1,2,2],[0,2,2]]
输出:7
解释:可行的关闭分部方案有:
- 关闭分部集合 [] ,剩余分部为 [0,1,2] ,它们之间的最远距离为 4 。
- 关闭分部集合 [0] ,剩余分部为 [1,2] ,它们之间的距离为 2 。
- 关闭分部集合 [1] ,剩余分部为 [0,2] ,它们之间的距离为 2 。
- 关闭分部集合 [0,1] ,剩余分部为 [2] 。
- 关闭分部集合 [1,2] ,剩余分部为 [0] 。
- 关闭分部集合 [0,2] ,剩余分部为 [1] 。
- 关闭分部集合 [0,1,2] ,关闭后没有剩余分部。
总共有 7 种可行的关闭方案。

示例 3:

输入:n = 1, maxDistance = 10, roads = []
输出:2
解释:可行的关闭分部方案有:
- 关闭分部集合 [] ,剩余分部为 [0] 。
- 关闭分部集合 [0] ,关闭后没有剩余分部。
总共有 2 种可行的关闭方案。

说明:

  • 1 <= n <= 10
  • 1 <= maxDistance <= 105
  • 0 <= roads.length <= 1000
  • roads[i].length == 3
  • 0 <= ui, vi <= n - 1
  • ui != vi
  • 1 <= wi <= 1000
  • 一开始所有分部之间通过道路互相可以到达。

思路

没时间做了// todo

代码

性能

2972.统计移除递增子数组的数目II

目标

给你一个下标从 0 开始的 正 整数数组 nums 。

如果 nums 的一个子数组满足:移除这个子数组后剩余元素 严格递增 ,那么我们称这个子数组为 移除递增 子数组。比方说,[5, 3, 4, 6, 7] 中的 [3, 4] 是一个移除递增子数组,因为移除该子数组后,[5, 3, 4, 6, 7] 变为 [5, 6, 7] ,是严格递增的。

请你返回 nums 中 移除递增 子数组的总数目。

注意,剩余元素为空的数组也视为是递增的。

子数组 指的是一个数组中一段连续的元素序列。

示例 1:

输入:nums = [1,2,3,4]
输出:10
解释:10 个移除递增子数组分别为:[1], [2], [3], [4], [1,2], [2,3], [3,4], [1,2,3], [2,3,4] 和 [1,2,3,4]。移除任意一个子数组后,剩余元素都是递增的。注意,空数组不是移除递增子数组。

示例 2:

输入:nums = [6,5,7,8]
输出:7
解释:7 个移除递增子数组分别为:[5], [6], [5,7], [6,5], [5,7,8], [6,5,7] 和 [6,5,7,8] 。
nums 中只有这 7 个移除递增子数组。

示例 3:

输入:nums = [8,7,6,6]
输出:3
解释:3 个移除递增子数组分别为:[8,7,6], [7,6,6] 和 [8,7,6,6] 。注意 [8,7] 不是移除递增子数组因为移除 [8,7] 后 nums 变为 [6,6] ,它不是严格递增的。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^9

思路

有一个正整数数组,如果移除某些子数组可以使得剩余元素严格递增,则称为移除递增子数组。求移除递增子数组的个数。

显然移除递增子数组 [i, j] 后,前后的子数组严格递增,且 nums[i - 1] < nums[j + 1]。我们的目标是要找到有多少种 i, j 的组合满足条件,假设 i ≤ j

今天又重新思考了一下,可以先求出数组最长的严格递增前缀的最后一个元素之后的下标 first,以及最长的 严格递增后缀第一个元素下标 end。这里下标的含义直接影响着后续的处理,比如这里没有定义end为后缀第一个元素的前一个元素,那么后面遍历的时候j的初值就要取end - 1,因为判断 j == n - 1 时的处理逻辑是排除了所有后缀直接加1,而如果j初值取end,表示nums[j]是被留下来的,就不能简单的加1了,还需要与前面前缀的最后一个元素比较。

  • 如果 first 不在数组下标范围内,说明数组整体严格递增,这时所有子数组都满足条件,n 个元素数组的子数组个数为 n * (n + 1) / 2
  • 否则,循环遍历 i ∈[0, first],令j = end - 1,用 nums[i - 1] 依次与后缀 [end, n) 范围内的元素比较,如果 nums[i - 1] < nums[j + 1] 则直接增加 n - 1 - (j + 1) + 1 + 1 = n - j 个,其中包括[j + 1, n - 1]、……、[n - 1, n - 1] 以及 [0, i)这里省略了与不同前缀的组合(下同)特别注意:
    • i == 0 时会越界,需要特殊处理。这里剩余的子数组包括:ϕ、[end, n - 1]、[end + 1, n - 1]、……、[n - 1, n - 1],从 end 到 n - 1n - 1 - end + 1 = n - end 个,再加上ϕ 即 n - end + 1不能使用公式计算后缀子数组的个数!因为前面存在非严格递增的子数组需要排除掉,而剩余数组是移除递增子数组得到的,前面移除了,后面就必须全部保留,比如 [1, 2, 3] 的子数组 [1] [1,2] [1,2,3] [2] [2,3] [3],我们只能得到 [1,2,3] [2,3] [3] 再加一个ϕ
    • j = n - 1 时会越界,这时表明已经排除了所有后缀,所以直接加1即可,表示前缀子数组 [0, i)

代码

/**
 * @date 2024-07-11 13:12
 */
public class IncremovableSubarrayCount2972 {

    public long incremovableSubarrayCount(int[] nums) {
        int n = nums.length;
        long res = 0;
        int first = -1;
        int end = -1;
        for (int i = 1; i < n; i++) {
            if (nums[i] <= nums[i - 1]) {
                first = i;
                break;
            }
        }
        if (first == -1) {
            return n * (n + 1) / 2;
        } else {
            for (int i = n - 2; i >= 0; i--) {
                if (nums[i + 1] <= nums[i]) {
                    end = i + 1;
                    break;
                }
            }
        }

        for (int i = 0; i <= first; i++) {
            if (i == 0) {
                res += n - end + 1;
                continue;
            }
            for (int j = end - 1; j < n; j++) {
                if (j == n - 1) {
                    res += 1;
                } else if (nums[i - 1] < nums[j + 1]) {
                    res += n - j;
                    break;
                }
            }
        }
        return res;
    }
}

性能