2444.统计定界子数组的数目

目标

给你一个整数数组 nums 和两个整数 minK 以及 maxK 。

nums 的定界子数组是满足下述条件的一个子数组:

  • 子数组中的 最小值 等于 minK 。
  • 子数组中的 最大值 等于 maxK 。

返回定界子数组的数目。

子数组是数组中的一个连续部分。

示例 1:

输入:nums = [1,3,5,2,7,5], minK = 1, maxK = 5
输出:2
解释:定界子数组是 [1,3,5] 和 [1,3,5,2] 。

示例 2:

输入:nums = [1,1,1,1], minK = 1, maxK = 1
输出:10
解释:nums 的每个子数组都是一个定界子数组。共有 10 个子数组。

说明:

  • 2 <= nums.length <= 10^5
  • 1 <= nums[i], minK, maxK <= 10^6

思路

统计满足条件的子数组个数,子数组中必须包含 minKmaxK,并且其它元素值在 [minK, maxK] 内。

明显的滑动窗口问题,求窗口内 minKmaxK 的计数均大于等于 1 且元素值在 [minK, maxK] 内的子数组个数。

如果遇到不在范围内的元素,直接从下一个位置重新开始滑动,关键点是记录滑动的开始位置 start

代码


/**
 * @date 2025-04-26 0:25
 */
public class CountSubarrays2444 {

    public long countSubarrays(int[] nums, int minK, int maxK) {
        int n = nums.length;
        int minCnt = 0, maxCnt = 0;
        int left = 0, start = 0;
        long res = 0L;
        for (int right = 0; right < n; right++) {
            if (nums[right] < minK || nums[right] > maxK) {
                left = right + 1;
                start = left;
                minCnt = 0;
                maxCnt = 0;
                continue;
            }
            if (nums[right] == minK) {
                minCnt++;
            }
            if (nums[right] == maxK) {
                maxCnt++;
            }
            while (minCnt > 0 && maxCnt > 0) {
                if (nums[left] == minK) {
                    minCnt--;
                }
                if (nums[left] == maxK) {
                    maxCnt--;
                }
                left++;
            }
            res += left - start;
        }
        return res;
    }

}

性能

2338.统计理想数组的数目

目标

给你两个整数 n 和 maxValue ,用于描述一个 理想数组 。

对于下标从 0 开始、长度为 n 的整数数组 arr ,如果满足以下条件,则认为该数组是一个 理想数组 :

  • 每个 arr[i] 都是从 1 到 maxValue 范围内的一个值,其中 0 <= i < n 。
  • 每个 arr[i] 都可以被 arr[i - 1] 整除,其中 0 < i < n 。

返回长度为 n 的 不同 理想数组的数目。由于答案可能很大,返回对 10^9 + 7 取余的结果。

示例 1:

输入:n = 2, maxValue = 5
输出:10
解释:存在以下理想数组:
- 以 1 开头的数组(5 个):[1,1]、[1,2]、[1,3]、[1,4]、[1,5]
- 以 2 开头的数组(2 个):[2,2]、[2,4]
- 以 3 开头的数组(1 个):[3,3]
- 以 4 开头的数组(1 个):[4,4]
- 以 5 开头的数组(1 个):[5,5]
共计 5 + 2 + 1 + 1 + 1 = 10 个不同理想数组。

示例 2:

输入:n = 5, maxValue = 3
输出:11
解释:存在以下理想数组:
- 以 1 开头的数组(9 个):
   - 不含其他不同值(1 个):[1,1,1,1,1] 
   - 含一个不同值 2(4 个):[1,1,1,1,2], [1,1,1,2,2], [1,1,2,2,2], [1,2,2,2,2]
   - 含一个不同值 3(4 个):[1,1,1,1,3], [1,1,1,3,3], [1,1,3,3,3], [1,3,3,3,3]
- 以 2 开头的数组(1 个):[2,2,2,2,2]
- 以 3 开头的数组(1 个):[3,3,3,3,3]
共计 9 + 1 + 1 = 11 个不同理想数组。

说明:

  • 2 <= n <= 10^4
  • 1 <= maxValue <= 10^4

思路

//todo

代码

性能

2179.统计数组中好三元组数目

目标

给你两个下标从 0 开始且长度为 n 的整数数组 nums1 和 nums2 ,两者都是 [0, 1, ..., n - 1] 的 排列 。

好三元组 指的是 3 个 互不相同 的值,且它们在数组 nums1 和 nums2 中出现顺序保持一致。换句话说,如果我们将 pos1v 记为值 v 在 nums1 中出现的位置,pos2v 为值 v 在 nums2 中的位置,那么一个好三元组定义为 0 <= x, y, z <= n - 1 ,且 pos1x < pos1y < pos1z 和 pos2x < pos2y < pos2z 都成立的 (x, y, z) 。

请你返回好三元组的 总数目 。

示例 1:

输入:nums1 = [2,0,1,3], nums2 = [0,1,2,3]
输出:1
解释:
总共有 4 个三元组 (x,y,z) 满足 pos1x < pos1y < pos1z ,分别是 (2,0,1) ,(2,0,3) ,(2,1,3) 和 (0,1,3) 。
这些三元组中,只有 (0,1,3) 满足 pos2x < pos2y < pos2z 。所以只有 1 个好三元组。

示例 2:

输入:nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3]
输出:4
解释:总共有 4 个好三元组 (4,0,3) ,(4,0,2) ,(4,1,3) 和 (4,1,2) 。

说明:

  • n == nums1.length == nums2.length
  • 3 <= n <= 10^5
  • 0 <= nums1[i], nums2[i] <= n - 1
  • nums1 和 nums2 是 [0, 1, ..., n - 1] 的排列。

提示:

  • For every value y, how can you find the number of values x (0 ≤ x, y ≤ n - 1) such that x appears before y in both of the arrays?
  • Similarly, for every value y, try finding the number of values z (0 ≤ y, z ≤ n - 1) such that z appears after y in both of the arrays.
  • Now, for every value y, count the number of good triplets that can be formed if y is considered as the middle element.

思路

有两个 0 ~ n - 1 的排列,好三元组指这两个排列的公共子序列,求好三元组的总数目。

// todo

代码

性能

3272.统计好整数的数目

目标

给你两个 正 整数 n 和 k 。

如果一个整数 x 满足以下条件,那么它被称为 k 回文 整数 。

  • x 是一个 回文整数 。
  • x 能被 k 整除。

如果一个整数的数位重新排列后能得到一个 k 回文整数 ,那么我们称这个整数为 好 整数。比方说,k = 2 ,那么 2020 可以重新排列得到 2002 ,2002 是一个 k 回文串,所以 2020 是一个好整数。而 1010 无法重新排列数位得到一个 k 回文整数。

请你返回 n 个数位的整数中,有多少个 好 整数。

注意 ,任何整数在重新排列数位之前或者之后 都不能 有前导 0 。比方说 1010 不能重排列得到 101 。

示例 1:

输入:n = 3, k = 5
输出:27
解释:
部分好整数如下:
551 ,因为它可以重排列得到 515 。
525 ,因为它已经是一个 k 回文整数。

示例 2:

输入:n = 1, k = 4
输出:2
解释:
两个好整数分别是 4 和 8 。

示例 3:

输入:n = 5, k = 6
输出:2468

说明:

  • 1 <= n <= 10
  • 1 <= k <= 9

思路

求长度为 n 的正整数中有多少个可以重新排列成回文整数并且能够整除 k

// todo

代码

性能

2999.统计强大整数的数目

目标

给你三个整数 start ,finish 和 limit 。同时给你一个下标从 0 开始的字符串 s ,表示一个 正 整数。

如果一个 正 整数 x 末尾部分是 s (换句话说,s 是 x 的 后缀),且 x 中的每个数位至多是 limit ,那么我们称 x 是 强大的 。

请你返回区间 [start..finish] 内强大整数的 总数目 。

如果一个字符串 x 是 y 中某个下标开始(包括 0 ),到下标为 y.length - 1 结束的子字符串,那么我们称 x 是 y 的一个后缀。比方说,25 是 5125 的一个后缀,但不是 512 的后缀。

示例 1:

输入:start = 1, finish = 6000, limit = 4, s = "124"
输出:5
解释:区间 [1..6000] 内的强大数字为 124 ,1124 ,2124 ,3124 和 4124 。这些整数的各个数位都 <= 4 且 "124" 是它们的后缀。注意 5124 不是强大整数,因为第一个数位 5 大于 4 。
这个区间内总共只有这 5 个强大整数。

示例 2:

输入:start = 15, finish = 215, limit = 6, s = "10"
输出:2
解释:区间 [15..215] 内的强大整数为 110 和 210 。这些整数的各个数位都 <= 6 且 "10" 是它们的后缀。
这个区间总共只有这 2 个强大整数。

示例 3:

输入:start = 1000, finish = 2000, limit = 4, s = "3000"
输出:0
解释:区间 [1000..2000] 内的整数都小于 3000 ,所以 "3000" 不可能是这个区间内任何整数的后缀。

说明:

  • 1 <= start <= finish <= 10^15
  • 1 <= limit <= 9
  • 1 <= s.length <= floor(log10(finish)) + 1
  • s 数位中每个数字都小于等于 limit 。
  • s 不包含任何前导 0 。

思路

返回指定区间 [start, finish] 内,后缀为 s 且每个数字不超过 limit 的数字个数。

数位dp,需要特殊处理后缀,比如 s = 10,start = 101, finish = 521 还剩两位时,01 < 10, 21 > 10 都不能计数。

代码


/**
 * @date 2025-04-10 20:19
 */
public class NumberOfPowerfulInt2999 {

    public long numberOfPowerfulInt(long start, long finish, int limit, String s) {
        long suffix = Long.parseLong(s);
        if (finish < suffix) {
            return 0L;
        }
        int[] high = Long.toString(finish).chars().map(x -> x - '0').toArray();
        int hl = high.length;
        long[] mem = new long[hl];
        int[] low = new int[hl--];
        long tmp = start;
        while (tmp > 0) {
            low[hl--] = (int) (tmp % 10);
            tmp /= 10;
        }
        Arrays.fill(mem, -1L);
        return dfs(0, low, high, true, true, mem, limit, s);
    }

    public long dfs(int index, int[] low, int[] high, boolean isLowLimit, boolean isHighLimit, long[] mem, int limit, String s) {
        if (index == high.length - s.length()) {
            boolean unaviable = false;
            if (isHighLimit) {
                StringBuilder hr = new StringBuilder();
                int tmp = index;
                while (tmp < high.length) {
                    hr.append(high[tmp++]);
                }
                unaviable = Long.parseLong(hr.toString()) < Long.parseLong(s);
            }
            if (isLowLimit) {
                StringBuilder lr = new StringBuilder();
                while (index < high.length) {
                    lr.append(low[index++]);
                }
                unaviable = unaviable || Long.parseLong(lr.toString()) > Long.parseLong(s);
            }
            return unaviable ? 0 : 1;
        }
        if (!isLowLimit && !isHighLimit && mem[index] != -1) {
            return mem[index];
        }
        long res = 0;
        int up = isHighLimit ? Math.min(high[index], limit) : limit;
        int down = isLowLimit ? low[index] : 0;

        for (int i = down; i <= up; i++) {
            res += dfs(index + 1, low, high, isLowLimit && i == low[index], isHighLimit && i == high[index], mem, limit, s);
        }

        if (!isHighLimit && !isLowLimit) {
            mem[index] = res;
        }
        return res;
    }

}

性能

2360.图中的最长环

目标

给你一个 n 个节点的 有向图 ,节点编号为 0 到 n - 1 ,其中每个节点 至多 有一条出边。

图用一个大小为 n 下标从 0 开始的数组 edges 表示,节点 i 到节点 edges[i] 之间有一条有向边。如果节点 i 没有出边,那么 edges[i] == -1 。

请你返回图中的 最长 环,如果没有任何环,请返回 -1 。

一个环指的是起点和终点是 同一个 节点的路径。

示例 1:

输入:edges = [3,3,4,2,3]
输出去:3
解释:图中的最长环是:2 -> 4 -> 3 -> 2 。
这个环的长度为 3 ,所以返回 3 。

示例 2:

输入:edges = [2,-1,3,1]
输出:-1
解释:图中没有任何环。

说明:

  • n == edges.length
  • 2 <= n <= 10^5
  • -1 <= edges[i] < n
  • edges[i] != i

思路

//todo

代码

性能

2612.最少翻转操作数

目标

给你一个整数 n 和一个在范围 [0, n - 1] 以内的整数 p ,它们表示一个长度为 n 且下标从 0 开始的数组 arr ,数组中除了下标为 p 处是 1 以外,其他所有数都是 0 。

同时给你一个整数数组 banned ,它包含数组中的一些位置。banned 中第 i 个位置表示 arr[banned[i]] = 0 ,题目保证 banned[i] != p 。

你可以对 arr 进行 若干次 操作。一次操作中,你选择大小为 k 的一个 子数组 ,并将它 翻转 。在任何一次翻转操作后,你都需要确保 arr 中唯一的 1 不会到达任何 banned 中的位置。换句话说,arr[banned[i]] 始终 保持 0 。

请你返回一个数组 ans ,对于 [0, n - 1] 之间的任意下标 i ,ans[i] 是将 1 放到位置 i 处的 最少 翻转操作次数,如果无法放到位置 i 处,此数为 -1 。

  • 子数组 指的是一个数组里一段连续 非空 的元素序列。
  • 对于所有的 i ,ans[i] 相互之间独立计算。
  • 将一个数组中的元素 翻转 指的是将数组中的值变成 相反顺序 。

示例 1:

输入:n = 4, p = 0, banned = [1,2], k = 4
输出:[0,-1,-1,1]
解释:k = 4,所以只有一种可行的翻转操作,就是将整个数组翻转。一开始 1 在位置 0 处,所以将它翻转到位置 0 处需要的操作数为 0 。
我们不能将 1 翻转到 banned 中的位置,所以位置 1 和 2 处的答案都是 -1 。
通过一次翻转操作,可以将 1 放到位置 3 处,所以位置 3 的答案是 1 。

示例 2:

输入:n = 5, p = 0, banned = [2,4], k = 3
输出:[0,-1,-1,-1,-1]
解释:这个例子中 1 一开始在位置 0 处,所以此下标的答案为 0 。
翻转的子数组长度为 k = 3 ,1 此时在位置 0 处,所以我们可以翻转子数组 [0, 2],但翻转后的下标 2 在 banned 中,所以不能执行此操作。
由于 1 没法离开位置 0 ,所以其他位置的答案都是 -1 。

示例 3:

输入:n = 4, p = 2, banned = [0,1,3], k = 1
输出:[-1,-1,0,-1]
解释:这个例子中,我们只能对长度为 1 的子数组执行翻转操作,所以 1 无法离开初始位置。

说明:

  • 1 <= n <= 10^5
  • 0 <= p <= n - 1
  • 0 <= banned.length <= n - 1
  • 0 <= banned[i] <= n - 1
  • 1 <= k <= n
  • banned[i] != p
  • banned 中的值 互不相同 。

思路

// todo

代码

性能

2272.最大波动的子字符串

目标

字符串的 波动 定义为子字符串中出现次数 最多 的字符次数与出现次数 最少 的字符次数之差。

给你一个字符串 s ,它只包含小写英文字母。请你返回 s 里所有 子字符串的 最大波动 值。

子字符串 是一个字符串的一段连续字符序列。

示例 1:

输入:s = "aababbb"
输出:3
解释:
所有可能的波动值和它们对应的子字符串如以下所示:
- 波动值为 0 的子字符串:"a" ,"aa" ,"ab" ,"abab" ,"aababb" ,"ba" ,"b" ,"bb" 和 "bbb" 。
- 波动值为 1 的子字符串:"aab" ,"aba" ,"abb" ,"aabab" ,"ababb" ,"aababbb" 和 "bab" 。
- 波动值为 2 的子字符串:"aaba" ,"ababbb" ,"abbb" 和 "babb" 。
- 波动值为 3 的子字符串 "babbb" 。
所以,最大可能波动值为 3 。

示例 2:

输入:s = "abcde"
输出:0
解释:
s 中没有字母出现超过 1 次,所以 s 中每个子字符串的波动值都是 0 。

说明:

  • 1 <= s.length <= 10^4
  • s 只包含小写英文字母。

思路

//todo

代码

性能

2234.花园的最大总美丽值

目标

Alice 是 n 个花园的园丁,她想通过种花,最大化她所有花园的总美丽值。

给你一个下标从 0 开始大小为 n 的整数数组 flowers ,其中 flowers[i] 是第 i 个花园里已经种的花的数目。已经种了的花 不能 移走。同时给你 newFlowers ,表示 Alice 额外可以种花的 最大数目 。同时给你的还有整数 target ,full 和 partial 。

如果一个花园有 至少 target 朵花,那么这个花园称为 完善的 ,花园的 总美丽值 为以下分数之 和 :

  • 完善 花园数目乘以 full.
  • 剩余 不完善 花园里,花的 最少数目 乘以 partial 。如果没有不完善花园,那么这一部分的值为 0 。

请你返回 Alice 种最多 newFlowers 朵花以后,能得到的 最大 总美丽值。

示例 1:

输入:flowers = [1,3,1,1], newFlowers = 7, target = 6, full = 12, partial = 1
输出:14
解释:Alice 可以按以下方案种花
- 在第 0 个花园种 2 朵花
- 在第 1 个花园种 3 朵花
- 在第 2 个花园种 1 朵花
- 在第 3 个花园种 1 朵花
花园里花的数目为 [3,6,2,2] 。总共种了 2 + 3 + 1 + 1 = 7 朵花。
只有 1 个花园是完善的。
不完善花园里花的最少数目是 2 。
所以总美丽值为 1 * 12 + 2 * 1 = 12 + 2 = 14 。
没有其他方案可以让花园总美丽值超过 14 。

示例 2:

输入:flowers = [2,4,5,3], newFlowers = 10, target = 5, full = 2, partial = 6
输出:30
解释:Alice 可以按以下方案种花
- 在第 0 个花园种 3 朵花
- 在第 1 个花园种 0 朵花
- 在第 2 个花园种 0 朵花
- 在第 3 个花园种 2 朵花
花园里花的数目为 [5,4,5,5] 。总共种了 3 + 0 + 0 + 2 = 5 朵花。
有 3 个花园是完善的。
不完善花园里花的最少数目为 4 。
所以总美丽值为 3 * 2 + 4 * 6 = 6 + 24 = 30 。
没有其他方案可以让花园总美丽值超过 30 。
注意,Alice可以让所有花园都变成完善的,但这样她的总美丽值反而更小。

说明:

  • 1 <= flowers.length <= 10^5
  • 1 <= flowers[i], target <= 10^5
  • 1 <= newFlowers <= 10^10
  • 1 <= full, partial <= 10^5

思路

有一个整数数组 flowersflowers[i] 表示下标为 i 的花园种植的花的数目。花园的美丽值通过以下方式计算:

  • 花园中花的数目大于等于 target,称该花园是完善的,美丽值 = 所有完善花园的个数 * full
  • 花园中花的数目小于 target,美丽值 = 所有花园中花的最小数目 * partial

Alice 可以向任意花园中种花,新种的花的数目不超过 newFlowers,求花园的最大美丽值。

// todo

代码

性能

1745.分割回文串IV

目标

给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false 。

当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串 。

示例 1:

输入:s = "abcbdd"
输出:true
解释:"abcbdd" = "a" + "bcb" + "dd",三个子字符串都是回文的。

示例 2:

输入:s = "bcbddxy"
输出:false
解释:s 没办法被分割成 3 个回文子字符串。

说明:

  • 3 <= s.length <= 2000
  • s​​​​​​ 只包含小写英文字母。

思路

判断能否将给定字符串分割成三个非空回文子串。

核心逻辑:

  • 计算所有子串是否是回文。
  • 从起点 i = 0 开始,枚举所有终点 j,如果是 s[i~j] 是回文,k-- 接着以 j + 1 为起点继续递归搜索。
  • 结束条件是 i == s.length() || k < 0,如果 k == 0 返回 true。

代码


/**
 * @date 2025-03-04 15:58
 */
public class CheckPartitioning1745 {

    public boolean checkPartitioning(String s) {
        int n = s.length();
        boolean[][] isPalindrome = new boolean[n][n];
        for (boolean[] row : isPalindrome) {
            Arrays.fill(row, true);
        }
        for (int i = n - 2; i >= 0; i--) {
            for (int j = i + 1; j < n; j++) {
                isPalindrome[i][j] = s.charAt(i) == s.charAt(j) && isPalindrome[i + 1][j - 1];
            }
        }
        char[][] mem = new char[n][4];
        return dfs(0, 3, isPalindrome, s, mem);
    }

    public boolean dfs(int i, int k, boolean[][] isPalindrome, String s, char[][] mem) {
        int n = s.length();
        if (i == n || k < 0) {
            return k == 0;
        }
        if (mem[i][k] != '\u0000') {
            return mem[i][k] == 'T';
        }
        boolean res = false;
        for (int j = i; j < n; j++) {
            if (isPalindrome[i][j]) {
                res = res || dfs(j + 1, k - 1, isPalindrome, s, mem);
            }
        }
        mem[i][k] = res ? 'T' : 'F';
        return res;
    }

}

性能