3249.统计好节点的数目

目标

现有一棵 无向 树,树中包含 n 个节点,按从 0 到 n - 1 标记。树的根节点是节点 0 。给你一个长度为 n - 1 的二维整数数组 edges,其中 edges[i] = [ai, bi] 表示树中节点 ai 与节点 bi 之间存在一条边。

如果一个节点的所有子节点为根的 子树 包含的节点数相同,则认为该节点是一个 好节点。

返回给定树中 好节点 的数量。

子树 指的是一个节点以及它所有后代节点构成的一棵树。

示例 1:

输入:edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]
输出:7
说明:
树的所有节点都是好节点。

示例 2:

输入:edges = [[0,1],[1,2],[2,3],[3,4],[0,5],[1,6],[2,7],[3,8]]
输出:6
说明:
树中有 6 个好节点。上图中已将这些节点着色。

示例 3:

输入:edges = [[0,1],[1,2],[1,3],[1,4],[0,5],[5,6],[6,7],[7,8],[0,9],[9,10],[9,12],[10,11]]
输出:12
解释:
除了节点 9 以外其他所有节点都是好节点。

说明:

  • 2 <= n <= 10^5
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= ai, bi < n
  • 输入确保 edges 总表示一棵有效的树。

思路

树中的任一节点,如果以它的子节点为根的子树包含相同的节点数量,则称该节点为好节点。注意没有要求子节点是好节点,只统计子树整体的节点个数。求给定树的好节点个数。

dfs 获取子树节点数目,判断各子树的节点个数是否相同。叶子节点没有子树,可认为子树节点个数为 0 也是好节点。

代码


/**
 * @date 2024-11-14 9:32
 */
public class CountGoodNodes3249 {
    int res = 0;
    List<Integer>[] g;

    public int countGoodNodes(int[][] edges) {
        g = new List[edges.length + 1];
        int n = g.length;
        for (int i = 0; i < n; i++) {
            g[i] = new ArrayList<>();
        }
        for (int i = 0; i < edges.length; i++) {
            g[edges[i][0]].add(edges[i][1]);
            g[edges[i][1]].add(edges[i][0]);
        }
        dfs(-1, 0);
        return res;
    }

    public int dfs(int parent, int cur) {
        int num = 1;
        int prev = -1;
        boolean equal = true;
        for (Integer next : g[cur]) {
            if (next == parent) {
                continue;
            }
            int childNum = dfs(cur, next);
            if (prev != -1 && prev != childNum) {
                equal = false;
            }
            prev = childNum;
            num += childNum;
        }
        if (equal) {
            res++;
        }
        return num;
    }

}

性能

3235.判断矩形的两个角落是否可达

目标

给你两个正整数 xCorner 和 yCorner 和一个二维整数数组 circles ,其中 circles[i] = [xi, yi, ri] 表示一个圆心在 (xi, yi) 半径为 ri 的圆。

坐标平面内有一个左下角在原点,右上角在 (xCorner, yCorner) 的矩形。你需要判断是否存在一条从左下角到右上角的路径满足:路径 完全 在矩形内部,不会 触碰或者经过 任何 圆的内部和边界,同时 只 在起点和终点接触到矩形。

如果存在这样的路径,请你返回 true ,否则返回 false 。

示例 1:

输入:X = 3, Y = 4, circles = [[2,1,1]]
输出:true
解释:
黑色曲线表示一条从 (0, 0) 到 (3, 4) 的路径。

示例 2:

输入:X = 3, Y = 3, circles = [[1,1,2]]
输出:false
解释:
不存在从 (0, 0) 到 (3, 3) 的路径。

示例 3:

输入:X = 3, Y = 3, circles = [[2,1,1],[1,2,1]]
输出:false
解释:
不存在从 (0, 0) 到 (3, 3) 的路径。

示例 4:

输入:X = 4, Y = 4, circles = [[5,5,1]]
输出:true
解释:

说明:

  • 3 <= xCorner, yCorner <= 10^9
  • 1 <= circles.length <= 1000
  • circles[i].length == 3
  • 1 <= xi, yi, ri <= 10^9

思路

有一个以原点为左下顶点, [xCorner, yCorner] 为右上顶点的矩形,还有一些圆 circlescircles[i, j, r] 表示圆的圆心在 (i, j) 半径为 r。问是否存在一条从原点到 [xCorner, yCorner] 的路径,满足路径在矩形内部(不与矩形边界重合),且不触碰或经过任何园的内部与边界。

评论说这是史上分数最高的题目,周赛全球也没几个人做出来,直接放弃了。

代码

性能

690.员工的重要性

目标

你有一个保存员工信息的数据结构,它包含了员工唯一的 id ,重要度和直系下属的 id 。

给定一个员工数组 employees,其中:

  • employees[i].id 是第 i 个员工的 ID。
  • employees[i].importance 是第 i 个员工的重要度。
  • employees[i].subordinates 是第 i 名员工的直接下属的 ID 列表。

给定一个整数 id 表示一个员工的 ID,返回这个员工和他所有下属的重要度的 总和。

示例 1:

输入:employees = [[1,5,[2,3]],[2,3,[]],[3,3,[]]], id = 1
输出:11
解释:员工 1 自身的重要度是 5 ,他有两个直系下属 2 和 3 ,而且 2 和 3 的重要度均为 3 。因此员工 1 的总重要度是 5 + 3 + 3 = 11 。

示例 2:

输入:employees = [[1,2,[5]],[5,-3,[]]], id = 5
输出:-3
解释:员工 5 的重要度为 -3 并且没有直接下属。因此,员工 5 的总重要度为 -3。

说明:

  • 1 <= employees.length <= 2000
  • 1 <= employees[i].id <= 2000
  • 所有的 employees[i].id 互不相同。
  • -100 <= employees[i].importance <= 100
  • 一名员工最多有一名直接领导,并可能有多名下属。
  • employees[i].subordinates 中的 ID 都有效。

思路

有一个数据结构 Employee,属性有 id、重要性、下属id集合。现在要查找给定id员工的重要性,即自身及下属的重要性之和。

直接使用map映射id与员工对象,使用dfs或者bfs搜索并累加重要性即可。

代码


/**
 * @date 2024-08-26 14:59
 */
public class GetImportance690 {
    class Employee {
        public int id;
        public int importance;
        public List<Integer> subordinates;
    }

    public int getImportance(List<Employee> employees, int id) {
        Employee root = null;
        Map<Integer, Employee> map = new HashMap<>();
        for (Employee employee : employees) {
            map.put(employee.id, employee);
        }
        int res = 0;
        Queue<Employee> q = new ArrayDeque<>(employees.size());
        q.offer(map.get(id));
        while (!q.isEmpty()) {
            int size = q.size();
            for (int i = 0; i < size; i++) {
                Employee node = q.poll();
                res += node.importance;
                for (Integer subordinate : node.subordinates) {
                    q.offer(map.get(subordinate));
                }
            }
        }
        return res;
    }
}

性能

600.不含连续1的非负整数

目标

给定一个正整数 n ,请你统计在 [0, n] 范围的非负整数中,有多少个整数的二进制表示中不存在 连续的 1 。

示例 1:

输入: n = 5
输出: 5
解释: 
下面列出范围在 [0, 5] 的非负整数与其对应的二进制表示:
0 : 0
1 : 1
2 : 10
3 : 11
4 : 100
5 : 101
其中,只有整数 3 违反规则(有两个连续的 1 ),其他 5 个满足规则。

示例 2:

输入: n = 1
输出: 2

示例 3:

输入: n = 2
输出: 3

说明:

  • 1 <= n <= 10^9

思路

给定一个正整数n,求 [0, n] 范围内整数的二进制表示中不含连续1的整数个数。

由于n最大10^9,如果挨个判断整数是否含连续的bit 1,实际复杂度为O(31n),超时。

既然暴力解不行只能考虑其它方法。分析n的二进制表示,将问题转换为一定限制条件下的排列组合问题。求得二进制表示之后可以使用dfs来计算组合数。如果不使用记忆化搜索同样会超时,这里使用状态压缩来记录重复的子问题。状态指方法参数的组合,如果cur为1,则将高位置1与index相与,第二个维度0表示不可以将0改为1,1表示可以将0改为1。

官网题解使用的是递推。

代码

/**
 * @date 2024-08-05 10:20
 */
public class FindIntegers600 {

    public int findIntegers(int n) {
        List<Integer> bitmap = new ArrayList<>(32);
        while (n > 0) {
            bitmap.add(n & 1);
            n >>= 1;
        }
        int[][] mem = new int[(1 << 5) | (bitmap.size() - 1)][2];
        return dfs(0, bitmap, bitmap.size() - 1, false, mem);
    }

    public int dfs(int pre, List<Integer> bitmap, int index, boolean zeroToOne, int[][] mem) {
        int cur = bitmap.get(index);
        if (index == 0) {
            return pre == 0 && (cur == 1 || zeroToOne) ? 2 : 1;
        }
        int res = 0;
        index--;
        int size = bitmap.size();
        int key = (1 << 5) | index;
        int zto = zeroToOne ? 1 : 0;
        if (pre == 1 && cur == 1) {
            // 如果前一个是1,当前也是1,将1改为0,允许后续的0改为1
            if (mem[index][1] == 0) {
                mem[index][1] = dfs(cur - 1, bitmap, index, true, mem);
            }
            res = mem[index][1];
        } else if (pre == 0 && cur == 1) {
            // 如果前一个是0,当前是1,将1改为0,允许后续的0改为1,或者当前不变,后续是否允许0变1取决于zeroToOne
            if (mem[index][1] == 0) {
                mem[index][1] = dfs(cur - 1, bitmap, index, true, mem);
            }
            if (mem[key][zto] == 0) {
                mem[key][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][1] + mem[key][zto];
        } else if (pre == 0 && cur == 0) {
            // 如果前一个是0,当前是0,当前不变,后续是否允0变1许取决于zeroToOne,如果当前zeroToOne为true,将0改为1
            if (mem[index][zto] == 0) {
                mem[index][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][zto];
            if (zeroToOne) {
                if (mem[key][zto] == 0) {
                    mem[key][zto] = dfs(cur + 1, bitmap, index, zeroToOne, mem);
                }
                res += mem[key][zto];
            }
        } else {
            // 如果前一个是1,当前是0,当前不变,后续是否允许0变1取决于zeroToOne
            if (mem[index][zto] == 0) {
                mem[index][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][zto];
        }
        return res;
    }

}

性能

572.另一棵树的子树

目标

给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true ;否则,返回 false 。

二叉树 tree 的一棵子树包括 tree 的某个节点和这个节点的所有后代节点。tree 也可以看做它自身的一棵子树。

示例 1:

输入:root = [3,4,5,1,2], subRoot = [4,1,2]
输出:true

示例 2:

输入:root = [3,4,5,1,2,null,null,null,null,0], subRoot = [4,1,2]
输出:false

说明:

  • root 树上的节点数量范围是 [1, 2000]
  • subRoot 树上的节点数量范围是 [1, 1000]
  • -10^4 <= root.val <= 10^4
  • -10^4 <= subRoot.val <= 10^4

思路

判断给定的树是否是另一颗树的子树。

刚开始想以某种顺序(先/中/后)遍历给定的树并记录访问节点,然后遍历另一棵树,如果节点值等于给定树的根节点则以同样的顺序记录其子树,再比较记录是否相同。但是这并不能保证结构是相同的。

只能逐个节点比较。进一步优化可以计算树的高度,只比较高度相同的。//todo

看了官网题解可以引入两个null值,进行串匹配的时候可以使用 KMP 或者 Rabin-Karp 算法。//todo

也提供了将树映射为hash值来比较的思路。//todo

代码

/**
 * @date 2024-08-04 15:36
 */
public class IsSubtree572 {

    public boolean isSubtree(TreeNode root, TreeNode subRoot) {
        if (root == null) {
            return false;
        }
        if (root.val == subRoot.val) {
            if (compare(root, subRoot)) {
                return true;
            }
        }
        return isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
    }

    public boolean compare(TreeNode root, TreeNode subRoot) {
        if (root.val != subRoot.val) {
            return false;
        }
        boolean res = false;
        if (root.left != null && subRoot.left != null) {
            res = compare(root.left, subRoot.left);
        } else if (root.left == null && subRoot.left == null){
            res = true;
        }
        if (root.right != null && subRoot.right != null) {
            res = compare(root.right, subRoot.right) && res;
        } else if (root.right == null && subRoot.right == null) {
        } else {
            res = false;
        }
        return res;
    }

}

性能

2101.引爆最多的炸弹

目标

给你一个炸弹列表。一个炸弹的 爆炸范围 定义为以炸弹为圆心的一个圆。

炸弹用一个下标从 0 开始的二维整数数组 bombs 表示,其中 bombs[i] = [xi, yi, ri] 。xi 和 yi 表示第 i 个炸弹的 X 和 Y 坐标,ri 表示爆炸范围的 半径 。

你需要选择引爆 一个 炸弹。当这个炸弹被引爆时,所有 在它爆炸范围内的炸弹都会被引爆,这些炸弹会进一步将它们爆炸范围内的其他炸弹引爆。

给你数组 bombs ,请你返回在引爆 一个 炸弹的前提下,最多 能引爆的炸弹数目。

示例 1:

输入:bombs = [[2,1,3],[6,1,4]]
输出:2
解释:
上图展示了 2 个炸弹的位置和爆炸范围。
如果我们引爆左边的炸弹,右边的炸弹不会被影响。
但如果我们引爆右边的炸弹,两个炸弹都会爆炸。
所以最多能引爆的炸弹数目是 max(1, 2) = 2 。

示例 2:

输入:bombs = [[1,1,5],[10,10,5]]
输出:1
解释:
引爆任意一个炸弹都不会引爆另一个炸弹。所以最多能引爆的炸弹数目为 1 。

示例 3:

输入:bombs = [[1,2,3],[2,3,1],[3,4,2],[4,5,3],[5,6,4]]
输出:5
解释:
最佳引爆炸弹为炸弹 0 ,因为:
- 炸弹 0 引爆炸弹 1 和 2 。红色圆表示炸弹 0 的爆炸范围。
- 炸弹 2 引爆炸弹 3 。蓝色圆表示炸弹 2 的爆炸范围。
- 炸弹 3 引爆炸弹 4 。绿色圆表示炸弹 3 的爆炸范围。
所以总共有 5 个炸弹被引爆。

说明:

  • 1 <= bombs.length <= 100
  • bombs[i].length == 3
  • 1 <= xi, yi, ri <= 10^5

思路

坐标平面上有一些炸弹,并且已知炸弹的爆炸范围。现在可以选择引爆其中的一颗炸弹,被引爆炸弹的爆炸范围内的其它炸弹也会被引爆,问最多可以引爆的炸弹数量。

我们可以将问题转换为有向图,一枚炸弹能够波及到的其它炸弹认为是连通的,然后遍历每一枚炸弹,求出连通炸弹数量最多的个数即可。

那么如何建立这个有向图呢?固定一个,依次与其余的节点比较,时间复杂度为O(n^2),炸弹最多100个,应该可行。

实现过程中需要判断爆炸范围内的是否存在其它炸弹,可以使用炸弹坐标(圆心)之间的距离与各自的引爆半径相比较。这里需要注意防止数据溢出,另外还有一个小技巧,比较 sqrt(dx^2 + dy^2) 与 半径 r 的效率没有 dx^2 + dy^2r^2 高。

网友最快的题解使用的是 Floyd 算法。// todo

代码

/**
 * @date 2024-07-22 9:24
 */
public class MaximumDetonation2101 {

    public int maximumDetonation_v1(int[][] bombs) {
        int n = bombs.length;
        List<Integer>[] g = new List[n];
        for (int i = 0; i < n; i++) {
            g[i] = new ArrayList<>();
        }
        for (int i = 0; i < n; i++) {
            int ix = bombs[i][0];
            int iy = bombs[i][1];
            long ir = bombs[i][2];
            for (int j = i + 1; j < n; j++) {
                int jx = bombs[j][0];
                int jy = bombs[j][1];
                long jr = bombs[j][2];
                // 防止溢出
                long diffx = ix - jx;
                long diffy = iy - jy;
                long dist = diffx * diffx + diffy * diffy;
                if (ir * ir >= dist) {
                    g[i].add(j);
                }
                if (jr * jr >= dist) {
                    g[j].add(i);
                }
            }
        }
        int res = 0;
        for (int i = 0; i < n; i++) {
            boolean[] visited = new boolean[n];
            res = Math.max(res, dfs(i, g, visited));
        }
        return res;
    }

    int dfs(int root, List<Integer>[] g, boolean[] visited) {
        visited[root] = true;
        int res = 1;
        for (Integer next : g[root]) {
            if (visited[next]) {
                continue;
            }
            res += dfs(next, g, visited);
        }
        return res;
    }

}

性能

图中至多有 n^2 条边,dfs的时间复杂度是O(n^2),然后再遍历n个起点,时间复杂度为O(n^3)。

721.账户合并

目标

给定一个列表 accounts,每个元素 accounts[i] 是一个字符串列表,其中第一个元素 accounts[i][0] 是 名称 (name),其余元素是 emails 表示该账户的邮箱地址。

现在,我们想合并这些账户。如果两个账户都有一些共同的邮箱地址,则两个账户必定属于同一个人。请注意,即使两个账户具有相同的名称,它们也可能属于不同的人,因为人们可能具有相同的名称。一个人最初可以拥有任意数量的账户,但其所有账户都具有相同的名称。

合并账户后,按以下格式返回账户:每个账户的第一个元素是名称,其余元素是 按字符 ASCII 顺序排列 的邮箱地址。账户本身可以以 任意顺序 返回。

示例 1:

输入:accounts = [["John", "johnsmith@mail.com", "john00@mail.com"], ["John", "johnnybravo@mail.com"], ["John", "johnsmith@mail.com", "john_newyork@mail.com"], ["Mary", "mary@mail.com"]]
输出:[["John", 'john00@mail.com', 'john_newyork@mail.com', 'johnsmith@mail.com'],  ["John", "johnnybravo@mail.com"], ["Mary", "mary@mail.com"]]
解释:
第一个和第三个 John 是同一个人,因为他们有共同的邮箱地址 "johnsmith@mail.com"。 
第二个 John 和 Mary 是不同的人,因为他们的邮箱地址没有被其他帐户使用。
可以以任何顺序返回这些列表,例如答案 [['Mary','mary@mail.com'],['John','johnnybravo@mail.com'],
['John','john00@mail.com','john_newyork@mail.com','johnsmith@mail.com']] 也是正确的。

示例 2:

输入:accounts = [["Gabe","Gabe0@m.co","Gabe3@m.co","Gabe1@m.co"],["Kevin","Kevin3@m.co","Kevin5@m.co","Kevin0@m.co"],["Ethan","Ethan5@m.co","Ethan4@m.co","Ethan0@m.co"],["Hanzo","Hanzo3@m.co","Hanzo1@m.co","Hanzo0@m.co"],["Fern","Fern5@m.co","Fern1@m.co","Fern0@m.co"]]
输出:[["Ethan","Ethan0@m.co","Ethan4@m.co","Ethan5@m.co"],["Gabe","Gabe0@m.co","Gabe1@m.co","Gabe3@m.co"],["Hanzo","Hanzo0@m.co","Hanzo1@m.co","Hanzo3@m.co"],["Kevin","Kevin0@m.co","Kevin3@m.co","Kevin5@m.co"],["Fern","Fern0@m.co","Fern1@m.co","Fern5@m.co"]]

说明:

  • 1 <= accounts.length <= 1000
  • 2 <= accounts[i].length <= 10
  • 1 <= accounts[i][j].length <= 30
  • accounts[i][0] 由英文字母组成
  • accounts[i][j] (for j > 0) 是有效的邮箱地址

思路

现有一个账号名称与邮箱列表组成的二维数组,如果两个账号对应的邮箱有重合,那么认为这两个账号属于同一个人,名称一定相同。但是名称相同不代表账户相同。现在需要将同一个人的账号合并,返回格式为,[名称,邮箱1,邮箱2,...],其中邮箱按 ASCII 排序。注意,同一个记录的邮箱列表中也可能存在相同邮箱,比如 ["Kevin","Kevin4@m.co","Kevin2@m.co","Kevin2@m.co"]

直接的想法是比较名称相同的账户邮箱是否有重合,如果有则合并。先将数据整理一下,换为 Map<name, List<List<Integer>>>,然后判断集合是否有共同元素,有则合并,没有则保留。那么使用什么方式处理集合呢?如果两两比较,时间复杂度为 O(n^2),好在一个账户邮箱最多 9 个,账户数量最多1000个,数据量不大。

如果两个集合有公共邮箱,那么可以使用 a.removeAll(b) 这个函数,它的返回值是布尔类型,如果a集合调用函数之后发生变化,即移除了a与b的公共元素,则返回 true,否则 false。因此当返回 true 时,直接与b合并,否则放回队列。需要注意的问题是,集合列表 {a,b} {c,d} {d,e} {e,f} {f,b} 将 第一个集合 {a,b} 与后面的集合依次两两比较时,直到最后一个才合并为{a,b,f},错过了与前面集合的合并,因此我们需要重新与前面的集合比较。

由于需要反复地比较这些集合,又要将属于同一账户的邮箱集合从集合列表中删除,涉及到集合的动态添加与删除。如果使用 ArrayList,尽管可以使用迭代器来动态添加与删除元素,但是从中间删除效率不高,需要移动数组元素。因此我们选择队列来保存这些集合,由于我们的操作主要在首尾两端,可以使用 ArrayDequeArrayDeque 双端操作效率比 LinkedList 更高,尽管它们都能在 O(1) 时间内完成操作,但是 LinkedList 需要额外的指针操作以及潜在的缓存不命中(不是连续分配的)问题,而 ArrayDeque 基于循环数组实现,只需调整头尾指针即可。

官网题解使用的是并查集,其实刚开始我也想到了使用并查集,但之前都是在图问题中用的,如果两个节点有边连接直接合并,但本题如何判断能否合并或者说是否连通呢?通常我们使用数组列表建图,但这里节点数据的类型不同,考虑使用map,key为邮箱,value为账户下标列表。遍历原二维数组,记录已合并的下标,如果邮箱对应有其它账户下标则进入dfs。

// todo 并查集

代码


/**
 * @date 2024-07-15 8:40
 */
public class AccountsMerge721 {
    public List<List<String>> accountsMerge_v1(List<List<String>> accounts) {
        int n = accounts.size();
        Map<String, List<Integer>> map = new HashMap<>();
        for (int i = 0; i < n; i++) {
            for (int j = 1; j < accounts.get(i).size(); j++) {
                map.computeIfAbsent(accounts.get(i).get(j), x -> new ArrayList<>()).add(i);
            }
        }

        boolean[] visited = new boolean[n];
        List<List<String>> res = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            if (visited[i]) {
                continue;
            }
            visited[i] = true;
            List<String> account = accounts.get(i);
            int size = account.size();
            Set<String> mailList = new HashSet<>(account.subList(1, size));
            for (int j = 1; j < size; j++) {
                String mail = accounts.get(i).get(j);
                for (Integer index : map.get(mail)) {
                    if (visited[index]) {
                        continue;
                    }
                    dfs(index, accounts, map, mailList, visited);
                }
            }
            ArrayList<String> item = new ArrayList<>(mailList);
            Collections.sort(item);
            item.add(0, accounts.get(i).get(0));
            res.add(item);
        }
        return res;
    }

    public void dfs(int index, List<List<String>> accounts, Map<String, List<Integer>> map, Set<String> mailList, boolean[] visited) {
        visited[index] = true;
        List<String> account = accounts.get(index);
        int size = account.size();
        mailList.addAll(account.subList(1, size));
        for (int j = 1; j < size; j++) {
            String mail = accounts.get(index).get(j);
            for (Integer next : map.get(mail)) {
                if (visited[next]) {
                    continue;
                }
                dfs(next, accounts, map, mailList, visited);
            }
        }
    }

    public List<List<String>> accountsMerge(List<List<String>> accounts) {
        Map<String, Queue<Set<String>>> map = new HashMap<>();
        for (List<String> account : accounts) {
            String name = account.get(0);
            map.putIfAbsent(name, new ArrayDeque<>());
            Queue<Set<String>> queue = map.get(name);
            Set<String> mails = new TreeSet<>();
            for (int i = 1; i < account.size(); i++) {
                mails.add(account.get(i));
            }
            queue.offer(mails);
        }
        List<List<String>> res = new ArrayList<>();
        for (Map.Entry<String, Queue<Set<String>>> entry : map.entrySet()) {
            Queue<Set<String>> queue = entry.getValue();
            List<Set<String>> merged = new ArrayList<>();
            while (!queue.isEmpty()) {
                Set<String> mails = queue.poll();
                int size = queue.size();
                int cnt = 0;
                for (int i = 0; i < size; i++) {
                    Set<String> m = queue.poll();
                    if (m.removeAll(mails)) {
                        // 存在问题,(a,b)(c,d)(d,e)(e,f)(f,b) 最后一个才合并(a,b,f),错过了与前面集合的合并
                        mails.addAll(m);
                        // 这里扩展了执行次数,与前面比较过的元素重新比较
                        size += cnt;
                        cnt = 0;
                    } else {
                        queue.add(m);
                        cnt++;
                    }
                }
                merged.add(mails);
            }

            for (Set<String> set : merged) {
                List<String> l = new ArrayList<>();
                l.add(entry.getKey());
                l.addAll(set);
                res.add(l);
            }
        }

        return res;
    }
}

性能

使用队列

使用dfs

139.单词拆分

目标

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。

注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

示例 1:

输入: s = "leetcode", wordDict = ["leet", "code"]
输出: true
解释: 返回 true 因为 "leetcode" 可以由 "leet" 和 "code" 拼接成。

示例 2:

输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true
解释: 返回 true 因为 "applepenapple" 可以由 "apple" "pen" "apple" 拼接成。注意,你可以重复使用字典中的单词。

示例 3:

输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false

说明:

  • 1 <= s.length <= 300
  • 1 <= wordDict.length <= 1000
  • 1 <= wordDict[i].length <= 20
  • s 和 wordDict[i] 仅由小写英文字母组成
  • wordDict 中的所有字符串 互不相同

思路

已知一个字符串列表 wordDict 和一个字符串 s,问能否用列表中的元素拼成该字符串,列表中的元素可以重复使用。

很明显需要使用动态规划来求解,假设当前列表元素 word 的长度为 l,子字符串 sub 的长度为 i,如果 sub.substring(0, i-l) 能由字典中的词拼成并且 word.equals(sub.substring(i-l, l)) 那么 sub 也能由字典中的词拼成。

代码

/**
 * @date 2024-06-23 19:58
 */
public class WordBreak139 {
    public boolean wordBreak(String s, List<String> wordDict) {
        int n = s.length();
        boolean[] dp = new boolean[n + 1];
        dp[0] = true;
        for (int i = 1; i <= n; i++) {
            for (String word : wordDict) {
                int length = word.length();
                if (length <= i && dp[i - length] && word.equals(s.substring(i - length, i))) {
                    dp[i] = true;
                }
            }
        }
        return dp[n];
    }

    public boolean wordBreak_v1(String s, List<String> wordDict) {
        int n = s.length();
        char[] mem = new char[n + 1];
        Arrays.fill(mem, '2');
        return dfs(s, 0, wordDict, mem) == '1';
    }

    public char dfs(String s, int i, List<String> wordDict, char[] mem) {
        int n = s.length();
        if (i == n) {
            return '1';
        }
        if (mem[i] != '2') {
            return mem[i];
        }
        for (String word : wordDict) {
            if (s.startsWith(word, i) && '1' == dfs(s, i + word.length(), wordDict, mem)) {
                return mem[i] = '1';
            }
        }
        return mem[i] = '0';
    }
}

性能

最快的解法是使用记忆化搜索,可以剪枝缩小搜索范围。

3040.相同分数的最大操作数目II

目标

给你一个整数数组 nums ,如果 nums 至少 包含 2 个元素,你可以执行以下操作中的 任意 一个:

  • 选择 nums 中最前面两个元素并且删除它们。
  • 选择 nums 中最后两个元素并且删除它们。
  • 选择 nums 中第一个和最后一个元素并且删除它们。

一次操作的 分数 是被删除元素的和。

在确保 所有操作分数相同 的前提下,请你求出 最多 能进行多少次操作。

请你返回按照上述要求 最多 可以进行的操作次数。

示例 1:

输入:nums = [3,2,1,2,3,4]
输出:3
解释:我们执行以下操作:
- 删除前两个元素,分数为 3 + 2 = 5 ,nums = [1,2,3,4] 。
- 删除第一个元素和最后一个元素,分数为 1 + 4 = 5 ,nums = [2,3] 。
- 删除第一个元素和最后一个元素,分数为 2 + 3 = 5 ,nums = [] 。
由于 nums 为空,我们无法继续进行任何操作。

示例 2:

输入:nums = [3,2,6,1,4]
输出:2
解释:我们执行以下操作:
- 删除前两个元素,分数为 3 + 2 = 5 ,nums = [6,1,4] 。
- 删除最后两个元素,分数为 1 + 4 = 5 ,nums = [6] 。
至多进行 2 次操作。

说明:

  • 2 <= nums.length <= 2000
  • 1 <= nums[i] <= 1000

思路

相同分数的最大操作数目I 增加了两种操作,可以删除最后两个元素或者一前一后两个元素。

我的思路是使用回溯算法,为了防止环的形成,使用自定义hash函数 (long) start << 16 | end; 记录已经搜索过的区间,并存入哈希表。

勉强通过了,看了官网题解,说是要用记忆搜索。网友还给出了递推的解法。//todo

代码

/**
 * @date 2024-06-08 20:03
 */
public class MaxOperations3040 {
    private Set<Long> set;

    public int maxOperations(int[] nums) {
        int res = 0;
        int n = nums.length;
        set = new HashSet<>();
        set.add(n - 1L);
        res = dfs(nums, 2, n - 1, nums[0] + nums[1], 1);
        res = Math.max(res, dfs(nums, 0, n - 3, nums[n - 2] + nums[n - 1], 1));
        res = Math.max(res, dfs(nums, 1, n - 2, nums[0] + nums[n - 1], 1));
        return res;
    }

    public int dfs(int[] nums, int start, int end, int target, int ops) {
        int res = ops;
        long key = (long) start << 16 | end;
        if (set.contains(key) || start >= end || res == nums.length / 2) {
            return res;
        }
        set.add(key);
        if (start < nums.length - 1 && nums[start] + nums[start + 1] == target) {
            res = dfs(nums, start + 2, end, target, ops + 1);
        }
        if (end >= 1 && nums[end] + nums[end - 1] == target) {
            res = Math.max(res, dfs(nums, start, end - 2, target, ops + 1));
        }
        if (end >= 0 && start < nums.length && nums[start] + nums[end] == target) {
            res = Math.max(res, dfs(nums, start + 1, end - 1, target, ops + 1));
        }
        return res;
    }

}

性能

3067.在带权树网络中统计可连接服务器对数目

目标

给你一棵无根带权树,树中总共有 n 个节点,分别表示 n 个服务器,服务器从 0 到 n - 1 编号。同时给你一个数组 edges ,其中 edges[i] = [ai, bi, weighti] 表示节点 ai 和 bi 之间有一条双向边,边的权值为 weighti 。再给你一个整数 signalSpeed 。

如果两个服务器 a ,b 和 c 满足以下条件,那么我们称服务器 a 和 b 是通过服务器 c 可连接的 :

  • a < b ,a != c 且 b != c 。
  • 从 c 到 a 的距离是可以被 signalSpeed 整除的。
  • 从 c 到 b 的距离是可以被 signalSpeed 整除的。
  • 从 c 到 b 的路径与从 c 到 a 的路径没有任何公共边。

请你返回一个长度为 n 的整数数组 count ,其中 count[i] 表示通过服务器 i 可连接 的服务器对的 数目 。

说明:

  • 2 <= n <= 1000
  • edges.length == n - 1
  • edges[i].length == 3
  • 0 <= ai, bi < n
  • edges[i] = [ai, bi, weighti]
  • 1 <= weighti <= 10^6
  • 1 <= signalSpeed <= 10^6
  • 输入保证 edges 构成一棵合法的树。

思路

有一颗无根带权树,所有到服务器 c 的路径,如果路径长度能够被 signalSpeed 整除,并且路径没有重合,则这些服务器可以通过 c 连接。即 c 的每个分支上满足条件的节点可以与其它分支满足条件的节点连接。

遍历每一个节点,以其为根,使用dfs分别计算各分支满足条件的节点,然后计算服务器对。

假设根节点R有4个分支,每个分支上满足条件的节点个数为 a、b、c、d,我们可以使用下面两个方法计算服务器对:

for:
    a:ab + ac + ad
    b:bc + bd
    c:cd

或者

for
    a:0 * a
    b:a * b
    c:(a+b) * c
    d:(a+b+c) * d

第二种方法计算的其实是第一种方法斜线上的和
    a:ab + ac + ad
          /    /
    b:bc + bd
          /
    c:cd

最快的解法应该是换根dp,但是换根后节点数如何变化,处理起来比较复杂,考虑的情况也更多,容易出错。

代码

/**
 * @date 2024-06-04 8:41
 */
public class CountPairsOfConnectableServers3067 {

    private List<int[]>[] g;
    private int speed;

    public int[] countPairsOfConnectableServers_v1(int[][] edges, int signalSpeed) {
        int n = edges.length;
        g = new List[n + 1];
        speed = signalSpeed;
        int[] res = new int[n + 1];
        for (int i = 0; i <= n; i++) {
            g[i] = new ArrayList<>();
        }
        for (int i = 0; i < n; i++) {
            g[edges[i][0]].add(new int[]{edges[i][1], edges[i][2]});
            g[edges[i][1]].add(new int[]{edges[i][0], edges[i][2]});
        }
        for (int i = 0; i <= n; i++) {
            int pre = 0;
            if (g[i].size() == 1) {
                continue;
            }
            for (int j = 0; j < g[i].size(); j++) {
                int cnt = dfs(g[i].get(j)[0], i, g[i].get(j)[1]);
                res[i] += pre * cnt;
                pre += cnt;
            }
        }
        return res;
    }

    public int dfs(int root, int parent, int path) {
        int cnt = path % speed == 0 ? 1 : 0;
        if (g[root].size() == 1 && parent != -1) {
            return cnt;
        }
        for (int[] child : g[root]) {
            if (child[0] == parent) {
                continue;
            }
            cnt += dfs(child[0], root, path + child[1]);
        }
        return cnt;
    }

}

性能