90.子集II

目标

给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的 子集(幂集)。

解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。

示例 1:

输入:nums = [1,2,2]
输出:[[],[1],[1,2],[1,2,2],[2],[2,2]]

示例 2:

输入:nums = [0]
输出:[[],[0]]

说明:

  • 1 <= nums.length <= 10
  • -10 <= nums[i] <= 10

思路

返回数组不重复的子序列。

枚举子序列可以使用迭代或者回溯。迭代的思路是使用 bitmap 表示对应下标是否在子序列中,如果数组中元素个数为 nbitmap 值为 1 << n。回溯的思路是当前元素选或者不选,或者从当前元素到结尾下一个元素选哪一个。

题目的关键是如何判断收集到的子序列是否重复,这里的重复指组成子序列的元素与个数完全相同。

很容易想到使用序列的字符串来判断是否重复,但是如何处理组成元素相同而顺序不同的情况?可以对原数组排序,这样可以保证相同元素在子序列中的出现位置相同。比如 4, 4, 4, 1, 4,排序后 4 只会出现在 1 的后面,如果子序列中 4 的个数相同,那么子序列字符串也相同,这样就可以去重了。

如果使用回溯,则可以在枚举时直接去重。如果不选择某个元素,那么后面 相同的 元素都不选。这样可以保证相同元素同样的出现次数只枚举一次。

也有网友使用桶排序,回溯时对相同元素枚举取 0 ~ k 个。

代码


/**
 * @date 2025-02-05 9:09
 */
public class SubsetsWithDup90 {

    public List<List<Integer>> subsetsWithDup_v1(int[] nums) {
        int n = nums.length;
        List<List<Integer>> res = new ArrayList<>();
        Set<String> set = new HashSet<>();
        Arrays.sort(nums);
        n = 1 << n;
        for (int i = 0; i < n; i++) {
            List<Integer> subset = new ArrayList<>();
            for (int j = 0; j < nums.length; j++) {
                if (((i >> j) & 1) == 1) {
                    subset.add(nums[j]);
                }
            }
            if (!set.contains(subset.toString())) {
                res.add(subset);
            }
            set.add(subset.toString());
        }
        return res;
    }

    public List<List<Integer>> subsetsWithDup(int[] nums) {
        List<List<Integer>> res = new ArrayList<>();
        Arrays.sort(nums);
        List<Integer> subset = new ArrayList<>();
        dfs(0, nums, subset, res);
        return res;
    }

    public void dfs(int index, int[] nums, List<Integer> subset, List<List<Integer>> res) {
        if (index == nums.length) {
            res.add(new ArrayList<>(subset));
            return;
        }
        subset.add(nums[index]);
        dfs(index + 1, nums, subset, res);
        subset.remove(subset.size() - 1);
        index++;
        while (index < nums.length && nums[index] == nums[index - 1]){
            index++;
        }
        dfs(index, nums, subset, res);
    }

}

性能

bitmap 迭代

回溯

3181.执行操作可获得的最大总奖励II

目标

给你一个整数数组 rewardValues,长度为 n,代表奖励的值。

最初,你的总奖励 x 为 0,所有下标都是 未标记 的。你可以执行以下操作 任意次 :

  • 从区间 [0, n - 1] 中选择一个 未标记 的下标 i。
  • 如果 rewardValues[i] 大于 你当前的总奖励 x,则将 rewardValues[i] 加到 x 上(即 x = x + rewardValues[i]),并 标记 下标 i。

以整数形式返回执行最优操作能够获得的 最大 总奖励。

示例 1:

输入:rewardValues = [1,1,3,3]
输出:4
解释:
依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。

示例 2:

输入:rewardValues = [1,6,4,3,2]
输出:11
解释:
依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。

说明:

  • 1 <= rewardValues.length <= 5 * 10^4
  • 1 <= rewardValues[i] <= 5 * 10^4

思路

与昨天的题相比,数据范围变大了。

// todo

代码

性能

2101.引爆最多的炸弹

目标

给你一个炸弹列表。一个炸弹的 爆炸范围 定义为以炸弹为圆心的一个圆。

炸弹用一个下标从 0 开始的二维整数数组 bombs 表示,其中 bombs[i] = [xi, yi, ri] 。xi 和 yi 表示第 i 个炸弹的 X 和 Y 坐标,ri 表示爆炸范围的 半径 。

你需要选择引爆 一个 炸弹。当这个炸弹被引爆时,所有 在它爆炸范围内的炸弹都会被引爆,这些炸弹会进一步将它们爆炸范围内的其他炸弹引爆。

给你数组 bombs ,请你返回在引爆 一个 炸弹的前提下,最多 能引爆的炸弹数目。

示例 1:

输入:bombs = [[2,1,3],[6,1,4]]
输出:2
解释:
上图展示了 2 个炸弹的位置和爆炸范围。
如果我们引爆左边的炸弹,右边的炸弹不会被影响。
但如果我们引爆右边的炸弹,两个炸弹都会爆炸。
所以最多能引爆的炸弹数目是 max(1, 2) = 2 。

示例 2:

输入:bombs = [[1,1,5],[10,10,5]]
输出:1
解释:
引爆任意一个炸弹都不会引爆另一个炸弹。所以最多能引爆的炸弹数目为 1 。

示例 3:

输入:bombs = [[1,2,3],[2,3,1],[3,4,2],[4,5,3],[5,6,4]]
输出:5
解释:
最佳引爆炸弹为炸弹 0 ,因为:
- 炸弹 0 引爆炸弹 1 和 2 。红色圆表示炸弹 0 的爆炸范围。
- 炸弹 2 引爆炸弹 3 。蓝色圆表示炸弹 2 的爆炸范围。
- 炸弹 3 引爆炸弹 4 。绿色圆表示炸弹 3 的爆炸范围。
所以总共有 5 个炸弹被引爆。

说明:

  • 1 <= bombs.length <= 100
  • bombs[i].length == 3
  • 1 <= xi, yi, ri <= 10^5

思路

坐标平面上有一些炸弹,并且已知炸弹的爆炸范围。现在可以选择引爆其中的一颗炸弹,被引爆炸弹的爆炸范围内的其它炸弹也会被引爆,问最多可以引爆的炸弹数量。

我们可以将问题转换为有向图,一枚炸弹能够波及到的其它炸弹认为是连通的,然后遍历每一枚炸弹,求出连通炸弹数量最多的个数即可。

那么如何建立这个有向图呢?固定一个,依次与其余的节点比较,时间复杂度为O(n^2),炸弹最多100个,应该可行。

实现过程中需要判断爆炸范围内的是否存在其它炸弹,可以使用炸弹坐标(圆心)之间的距离与各自的引爆半径相比较。这里需要注意防止数据溢出,另外还有一个小技巧,比较 sqrt(dx^2 + dy^2) 与 半径 r 的效率没有 dx^2 + dy^2r^2 高。

网友最快的题解使用的是 Floyd 算法。// todo

代码

/**
 * @date 2024-07-22 9:24
 */
public class MaximumDetonation2101 {

    public int maximumDetonation_v1(int[][] bombs) {
        int n = bombs.length;
        List<Integer>[] g = new List[n];
        for (int i = 0; i < n; i++) {
            g[i] = new ArrayList<>();
        }
        for (int i = 0; i < n; i++) {
            int ix = bombs[i][0];
            int iy = bombs[i][1];
            long ir = bombs[i][2];
            for (int j = i + 1; j < n; j++) {
                int jx = bombs[j][0];
                int jy = bombs[j][1];
                long jr = bombs[j][2];
                // 防止溢出
                long diffx = ix - jx;
                long diffy = iy - jy;
                long dist = diffx * diffx + diffy * diffy;
                if (ir * ir >= dist) {
                    g[i].add(j);
                }
                if (jr * jr >= dist) {
                    g[j].add(i);
                }
            }
        }
        int res = 0;
        for (int i = 0; i < n; i++) {
            boolean[] visited = new boolean[n];
            res = Math.max(res, dfs(i, g, visited));
        }
        return res;
    }

    int dfs(int root, List<Integer>[] g, boolean[] visited) {
        visited[root] = true;
        int res = 1;
        for (Integer next : g[root]) {
            if (visited[next]) {
                continue;
            }
            res += dfs(next, g, visited);
        }
        return res;
    }

}

性能

图中至多有 n^2 条边,dfs的时间复杂度是O(n^2),然后再遍历n个起点,时间复杂度为O(n^3)。