2218.从栈中取出K个硬币的最大面值和

目标

一张桌子上总共有 n 个硬币 栈 。每个栈有 正整数 个带面值的硬币。

每一次操作中,你可以从任意一个栈的 顶部 取出 1 个硬币,从栈中移除它,并放入你的钱包里。

给你一个列表 piles ,其中 piles[i] 是一个整数数组,分别表示第 i 个栈里 从顶到底 的硬币面值。同时给你一个正整数 k ,请你返回在 恰好 进行 k 次操作的前提下,你钱包里硬币面值之和 最大为多少 。

示例 1:

输入:piles = [[1,100,3],[7,8,9]], k = 2
输出:101
解释:
上图展示了几种选择 k 个硬币的不同方法。
我们可以得到的最大面值为 101 。

示例 2:

输入:piles = [[100],[100],[100],[100],[100],[100],[1,1,1,1,1,1,700]], k = 7
输出:706
解释:
如果我们所有硬币都从最后一个栈中取,可以得到最大面值和。

说明:

  • n == piles.length
  • 1 <= n <= 1000
  • 1 <= piles[i][j] <= 10^5
  • 1 <= k <= sum(piles[i].length) <= 2000

思路

有 n 个栈,栈中有 piles[i].length 个硬币,每次操作可以从任意栈顶取一个硬币,求 k 次操作取得的硬币和的最大值。

定义 dp[i][j] 表示 从前 i + 1 个栈中最多取 j 个 所能得到的最大值,与 0 - 1 背包不同的是我们需要枚举从当前栈取 1 至 x 枚硬币的最大值,状态转移方程为 dp[i][j] = Math.max(dp[i][j], Math.max(dp[i - 1][j], dp[i - 1][j - x] + prefix[i][x])),外层 max 求的是当前栈每种取法的最大值,第二个参数的 max 求的是当前栈 不取 或者 取 x 枚硬币对应的最大值。由于是从栈顶取,我们使用前缀和 prefix 记录每个栈从栈顶到底的硬币和。

代码


/**
 * @date 2025-01-21 13:46
 */
public class MaxValueOfCoins2218 {

    public int maxValueOfCoins(List<List<Integer>> piles, int k) {
        int n = piles.size();
        int[][] prefix = new int[n][];
        // 计算前缀和
        for (int i = 0; i < n; i++) {
            List<Integer> pile = piles.get(i);
            prefix[i] = new int[pile.size() + 1];
            for (int j = 1; j <= pile.size(); j++) {
                prefix[i][j] = prefix[i][j - 1] + pile.get(j - 1);
            }
        }
        // 定义dp[i][j] 表示 从前 i + 1 个栈中最多取 j 个 所能得到的最大值
        int[][] dp = new int[n][k + 1];
        // 初始化,从第一个栈最多取 k 个
        for (int j = 1; j <= k; j++) {
            int length = piles.get(0).size();
            if (j <= length) {
                dp[0][j] = prefix[0][j];
            } else {
                dp[0][j] = dp[0][length];
            }
        }
        for (int i = 1; i < n; i++) {
            // 枚举右边界
            int length = piles.get(i).size();
            for (int j = 1; j <= k; j++) {
                // j 表示从前 i + 1 个栈中总共取 j 个
                for (int x = 1; x <= length && j >= x; x++) {
                    // 表示从当前栈中取 x 个
                    dp[i][j] = Math.max(dp[i][j], Math.max(dp[i - 1][j], dp[i - 1][j - x] + prefix[i][x]));
                }
            }
        }
        return dp[n - 1][k];
    }

}

性能