910.最小差值II

目标

给你一个整数数组 nums,和一个整数 k 。

对于每个下标 i(0 <= i < nums.length),将 nums[i] 变成 nums[i] + k 或 nums[i] - k 。

nums 的 分数 是 nums 中最大元素和最小元素的差值。

在更改每个下标对应的值之后,返回 nums 的最小 分数 。

示例 1:

输入:nums = [1], k = 0
输出:0
解释:分数 = max(nums) - min(nums) = 1 - 1 = 0 。

示例 2:

输入:nums = [0,10], k = 2
输出:6
解释:将数组变为 [2, 8] 。分数 = max(nums) - min(nums) = 8 - 2 = 6 。

示例 3:

输入:nums = [1,3,6], k = 3
输出:3
解释:将数组变为 [4, 6, 3] 。分数 = max(nums) - min(nums) = 6 - 3 = 3 。

说明:

  • 1 <= nums.length <= 10^4
  • 0 <= nums[i] <= 10^4
  • 0 <= k <= 10^4

思路

这道题与 908.最小差值I 的区别是对于每个元素操作是 必选的,增加或减少的值 固定k 而不是区间 [-k, k]

每个元素都可以取 nums[i] + knums[i] - k,如果枚举所有可能的数组,然后再取最大最小值差的最小值显然是不可能的。不考虑重复元素的情况下,可能的数组有 2^n 种。

可以先排序,增大小的值,减少大的值,枚举二者的边界,比如前 i 个元素 [0, i - 1]k,剩余元素减 k,这时上界为 Math.max(nums[i - 1] + k, nums[n - 1] - k) ,下界为 Math.min(nums[0] + k, nums[i] - k),取上下界的最小值即可。

代码


/**
 * @date 2024-10-21 9:57
 */
public class SmallestRangeII910 {

    public int smallestRangeII(int[] nums, int k) {
        Arrays.sort(nums);
        int n = nums.length;
        int res = nums[n - 1] - nums[0];
        for (int i = 1; i < n; i++) {
            int max = Math.max(nums[i - 1] + k, nums[n - 1] - k);
            int min = Math.min(nums[0] + k, nums[i] - k);
            res = Math.min(res, max - min);
        }
        return res;
    }

}

性能

871.最低加油次数

目标

汽车从起点出发驶向目的地,该目的地位于出发位置东面 target 英里处。

沿途有加油站,用数组 stations 表示。其中 stations[i] = [positioni, fueli] 表示第 i 个加油站位于出发位置东面 positioni 英里处,并且有 fueli 升汽油。

假设汽车油箱的容量是无限的,其中最初有 startFuel 升燃料。它每行驶 1 英里就会用掉 1 升汽油。当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。

为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1 。

注意:如果汽车到达加油站时剩余燃料为 0,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0,仍然认为它已经到达目的地。

示例 1:

输入:target = 1, startFuel = 1, stations = []
输出:0
解释:可以在不加油的情况下到达目的地。

示例 2:

输入:target = 100, startFuel = 1, stations = [[10,100]]
输出:-1
解释:无法抵达目的地,甚至无法到达第一个加油站。

示例 3:

输入:target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]]
输出:2
解释:
出发时有 10 升燃料。
开车来到距起点 10 英里处的加油站,消耗 10 升燃料。将汽油从 0 升加到 60 升。
然后,从 10 英里处的加油站开到 60 英里处的加油站(消耗 50 升燃料),
并将汽油从 10 升加到 50 升。然后开车抵达目的地。
沿途在两个加油站停靠,所以返回 2 。

说明:

  • 1 <= target, startFuel <= 10^9
  • 0 <= stations.length <= 500
  • 1 <= positioni < positioni+1 < target
  • 1 <= fueli < 10^9

思路

已知汽车油耗为 1 英里/升,现在想要开车前往 target 英里外的目的地,出发时车中有 startFuel 升油,沿途有 stations.length 个加油站,stations[i][0] 表示加油站 i 距出发地的距离,stations[i][1] 表示加油站 i 的汽油总量。假设汽车油箱无限大,求到达目的地的最少加油次数,如果无法到达返回 -1

可以将出发点、加油站、目的地画到数轴上,由于油耗为 1 英里/升,有多少升油就可以到达多远的距离。那么问题转化为从 n 个加油站中选取最少的个数,使油箱油量大于等于 target。要使选择的加油站最少,那么应该首选油量多的加油站,前提是能够抵达该加油站。我们可以使用大顶堆维护加油站油量,将能够抵达的加油站放入其中,然后将堆顶的油加入油箱,将新的能够抵达的加油站放入堆中,直到油箱中的油量大于等于 target

代码


/**
 * @date 2024-10-07 21:09
 */
public class MinRefuelStops871 {

    public int minRefuelStops(int target, int startFuel, int[][] stations) {
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a);
        int n = stations.length;
        int i = 0;
        int res = 0;
        int fuel = startFuel;
        while (fuel < target) {
            while (i < n && fuel >= stations[i][0]) {
                q.offer(stations[i++][1]);
            }
            if (!q.isEmpty()) {
                fuel += q.poll();
                res++;
                if (fuel >= target) {
                    return res;
                }
            } else if (i == n || fuel < stations[i][0]) {
                // 没有剩余的加油站或者无法抵达
                return -1;
            }
        }
        return res;
    }

}

性能

2207.字符串中最多数目的子序列

目标

给你一个下标从 0 开始的字符串 text 和另一个下标从 0 开始且长度为 2 的字符串 pattern ,两者都只包含小写英文字母。

你可以在 text 中任意位置插入 一个 字符,这个插入的字符必须是 pattern[0] 或者 pattern[1] 。注意,这个字符可以插入在 text 开头或者结尾的位置。

请你返回插入一个字符后,text 中最多包含多少个等于 pattern 的 子序列 。

子序列 指的是将一个字符串删除若干个字符后(也可以不删除),剩余字符保持原本顺序得到的字符串。

示例 1:

输入:text = "abdcdbc", pattern = "ac"
输出:4
解释:
如果我们在 text[1] 和 text[2] 之间添加 pattern[0] = 'a' ,那么我们得到 "abadcdbc" 。那么 "ac" 作为子序列出现 4 次。
其他得到 4 个 "ac" 子序列的方案还有 "aabdcdbc" 和 "abdacdbc" 。
但是,"abdcadbc" ,"abdccdbc" 和 "abdcdbcc" 这些字符串虽然是可行的插入方案,但是只出现了 3 次 "ac" 子序列,所以不是最优解。
可以证明插入一个字符后,无法得到超过 4 个 "ac" 子序列。

示例 2:

输入:text = "aabb", pattern = "ab"
输出:6
解释:
可以得到 6 个 "ab" 子序列的部分方案为 "aaabb" ,"aaabb" 和 "aabbb" 。

说明:

  • 1 <= text.length <= 10^5
  • pattern.length == 2
  • text 和 pattern 都只包含小写英文字母。

思路

已知字符串 pattern 包含两个小写英文字符,可以将其中的一个字符插入字符串 text,求插入后最多可以得到多少个个等于 pattern 的子序列。

刚开始想的是根据乘法原理来做,统计字符串中这两个字符出现的次数,cnt1cnt2,插入出现次数较小的字符,可以使子序列个数增加最多。子序列个数为 Math.max(cnt1, cnt2) * (Math.min(cnt1, cnt2) + 1)

但是这个想法忽略了这种情况,考虑字符串 mpmpcnt1 = 2, cnt2 = 2,但是子序列个数并不是 4,而是 3,需要减去第二个 m 之前的 p 的个数。我们不妨以 pattern[0] 为终点,统计它前面的 pattern[1] 的个数,将其从结果中减去。

其实这里还有一个漏洞,应该考虑 pattern 这两个字符相同的情况。c(n,2) = n(n - 1)/2,注意实际计算的时候应该将 n1,因为我们插入了一个字符,即 cnt1 * (cnt1 + 1) / 2

还是存在一个问题,比如 text 中的字符与 pattern 都是由一个相同的字符组成,那么 cnt1 最大值为 10^5,在乘法计算时就会溢出,需要使用long类型。

官网题解的思路是先计算不插入字符时子序列的个数,遇到 pattern[1] 就累加 pattern[0],同时记录二者的出现次数:

  • 如果 pattern[1] 出现次数更多,可以在开头插入 pattern[0] 使得子序列个数增加 pattern[1]
  • 如果 pattern[0] 出现次数更多,可以在结尾插入 pattern[1] 使得子序列个数增加 pattern[0]

最后直接将累加结果加上 Math.max(cnt1, cnt2) 即可。

代码


/**
 * @date 2024-09-24 8:54
 */
public class MaximumSubsequenceCount2207 {
    public long maximumSubsequenceCount(String text, String pattern) {
        long cnt1 = 0, cnt2 = 0;
        char c1 = pattern.charAt(0), c2 = pattern.charAt(1);
        char[] chars = text.toCharArray();
        long sub = 0;
        for (char c : chars) {
            if (c1 == c) {
                cnt1++;
                sub += cnt2;
            } else if (c2 == c) {
                cnt2++;
            }
        }
        if (c1 == c2) {
            return cnt1 * (cnt1 + 1) / 2;
        }
        return Math.max(cnt1, cnt2) * (Math.min(cnt1, cnt2) + 1) - sub;
    }

}

性能

LCP40.心算挑战

目标

「力扣挑战赛」心算项目的挑战比赛中,要求选手从 N 张卡牌中选出 cnt 张卡牌,若这 cnt 张卡牌数字总和为偶数,则选手成绩「有效」且得分为 cnt 张卡牌数字总和。 给定数组 cards 和 cnt,其中 cards[i] 表示第 i 张卡牌上的数字。 请帮参赛选手计算最大的有效得分。若不存在获取有效得分的卡牌方案,则返回 0。

示例 1:

输入:cards = [1,2,8,9], cnt = 3
输出:18
解释:选择数字为 1、8、9 的这三张卡牌,此时可获得最大的有效得分 1+8+9=18。

示例 2:

输入:cards = [3,3,1], cnt = 1
输出:0
解释:不存在获取有效得分的卡牌方案。

说明:

  • 1 <= cnt <= cards.length <= 10^5
  • 1 <= cards[i] <= 1000

思路

从数组中选cnt个元素,找出最大的偶数和,如果不存在偶数和返回0。

如果cnt为偶数,那么直接取最大的cnt个即可,如果cnt为奇数,取最大的cnt-1个,然后再从大到小判断和是否为偶数即可。 与cnt的奇偶性无关,它也不能保证cnt个元素相加和为偶数,必须要奇数元素的个数为偶数才行。

应该使用动态规划来做了,O(cnt * n)超出时间限制。

尝试根据数组元素奇偶性分组,然后分情况讨论如何选取。这里的限制条件是必须选取偶数个奇数元素,并且使得和最大。

这道题标成简单真的搞人心态啊,还是做的太少了。

代码

/**
 * @date 2024-08-01 20:24
 */
public class MaxmiumScoreLCP40 {

    public int maxmiumScore_v2(int[] cards, int cnt) {
        int res = 0;
        PriorityQueue<Integer> odd = new PriorityQueue<>((a, b) -> b - a);
        PriorityQueue<Integer> even = new PriorityQueue<>((a, b) -> b - a);
        // 将奇偶元素分组
        for (int card : cards) {
            if (card % 2 == 0) {
                even.offer(card);
            } else {
                odd.offer(card);
            }
        }
        // 如果只能选一个元素,那么直接从偶数队列取,否则返回0
        if (cnt == 1 && even.size() > 0) {
            return even.poll();
        } else if (cnt == 1) {
            return 0;
        }
        int oddCnt = 0;
        int lastOdd = 0;
        int lastEven = 0;
        // 从奇偶队列中,从大到小取cnt-1个,留一个后面分情况讨论
        while (cnt > 1) {
            if (!odd.isEmpty() && !even.isEmpty() && odd.peek() > even.peek()) {
                lastOdd = odd.poll();
                res += lastOdd;
                oddCnt++;
            } else if (!odd.isEmpty() && !even.isEmpty()) {
                lastEven = even.poll();
                res += lastEven;
            } else if (!odd.isEmpty()) {
                lastOdd = odd.poll();
                res += lastOdd;
                oddCnt++;
            } else if (!even.isEmpty()) {
                lastEven = even.poll();
                res += lastEven;
            }
            cnt--;
        }
        if (oddCnt % 2 == 1 && !odd.isEmpty()) {
            // 如果选择了奇数个奇数元素,并且奇数队列还有剩余元素
            if (even.size() >= 2) {
                // 如果偶数队列有超过两个,并且这两个之和大于最近已选的奇数元素+奇数队列的元素
                int tmp = even.poll();
                tmp += even.poll();
                if (tmp > lastOdd + odd.peek()) {
                    // 将上一个奇数选择删除,选两个偶数
                    res += tmp - lastOdd;
                } else {
                    // 否则选一个奇数
                    res += odd.poll();
                }
            } else {
                // 如果没有多余的偶数元素,直接选一个奇数
                res += odd.poll();
            }
        } else if (oddCnt % 2 == 1 && even.size() >= 2) {
            // 如果已经选了奇数个奇数元素,并且没有多余的奇数元素了,那么回退,选两个偶数
            res -= lastOdd;
            res += even.poll();
            res += even.poll();
        } else if (oddCnt % 2 == 0) {
            // 如果奇数元素选了偶数个,那么只需再选一个偶数,或者删掉一个偶数,选两个奇数
            if (odd.size() >= 2 && lastEven != 0) {
                // 如果奇数存在两个,且之前选过偶数
                int tmp = odd.poll();
                tmp += odd.poll();
                if (even.size() == 0 || tmp > lastEven + even.peek()) {
                    // 如果没有多余的偶数,或者两个奇数之和大于之前选择的偶数+偶数队列元素
                    // 选两个奇数
                    res += tmp - lastEven;
                } else {
                    // 选一个偶数
                    res += even.poll();
                }
            } else {
                // 如果没有多余2个的奇数了,只能选一个偶数
                if (even.size() == 0) {
                    return 0;
                } else {
                    res += even.poll();
                }
            }
        } else {
            // 如果已经选了奇数个奇数元素,并且没有多余的奇数元素了,并且偶数个数不足2个,返回0
            res = 0;
        }
        return res;
    }

}

性能

3111.覆盖所有点的最少矩形数目

目标

给你一个二维整数数组 point ,其中 points[i] = [xi, yi] 表示二维平面内的一个点。同时给你一个整数 w 。你需要用矩形 覆盖所有 点。

每个矩形的左下角在某个点 (x1, 0) 处,且右上角在某个点 (x2, y2) 处,其中 x1 <= x2 且 y2 >= 0 ,同时对于每个矩形都 必须 满足 x2 - x1 <= w 。

如果一个点在矩形内或者在边上,我们说这个点被矩形覆盖了。

请你在确保每个点都 至少 被一个矩形覆盖的前提下,最少 需要多少个矩形。

注意:一个点可以被多个矩形覆盖。

示例 1:

输入:points = [[2,1],[1,0],[1,4],[1,8],[3,5],[4,6]], w = 1
输出:2
解释:
上图展示了一种可行的矩形放置方案:
一个矩形的左下角在 (1, 0) ,右上角在 (2, 8) 。
一个矩形的左下角在 (3, 0) ,右上角在 (4, 8) 。

示例 2:

输入:points = [[0,0],[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]], w = 2
输出:3
解释:
上图展示了一种可行的矩形放置方案:
一个矩形的左下角在 (0, 0) ,右上角在 (2, 2) 。
一个矩形的左下角在 (3, 0) ,右上角在 (5, 5) 。
一个矩形的左下角在 (6, 0) ,右上角在 (6, 6) 。

示例 3:

输入:points = [[2,3],[1,2]], w = 0
输出:2
解释:
上图展示了一种可行的矩形放置方案:
一个矩形的左下角在 (1, 0) ,右上角在 (1, 2) 。
一个矩形的左下角在 (2, 0) ,右上角在 (2, 3) 。

说明:

  • 1 <= points.length <= 10^5
  • points[i].length == 2
  • 0 <= xi == points[i][0] <= 10^9
  • 0 <= yi == points[i][1] <= 10^9
  • 0 <= w <= 10^9
  • 所有点坐标 (xi, yi) 互不相同。

思路

有一个二维数组表示平面中的点,给定一个整数w表示矩形x方向的最大宽度,矩形的左下角在x坐标轴上某个点,右上角在第一象限某点。问覆盖坐标平面上所有点最少需要多少个矩形,在矩形边上也算被覆盖了。

由于y轴方向没有限制,我们只考虑x轴方向,可以将坐标平面中的点按照x轴坐标大小排序,然后按w宽度分组计数即可。

最快的写法是将二维坐标转成了一维的x坐标,排序只需要寻址一次。

代码

/**
 * @date 2024-07-31 9:12
 */
public class MinRectanglesToCoverPoints3111 {

    public int minRectanglesToCoverPoints_v1(int[][] points, int w) {
        int n = points.length;
        int[] x = new int[n];
        for (int i = 0; i < n; i++) {
            x[i] = points[i][0];
        }
        Arrays.sort(x);
        int res = 0;
        int r = -1;
        for (int i = 0; i < n; i++) {
            if (x[i] > r) {
                res++;
                r = x[i] + w;
            }
        }
        return res;
    }

    public int minRectanglesToCoverPoints(int[][] points, int w) {
        Arrays.sort(points, (a, b) -> a[0] - b[0]);
        int n = points.length;
        int res = 0;
        int l = 0;
        for (int i = 1; i < n; i++) {
            if (points[i][0] - points[l][0] > w) {
                res++;
                l = i;
            }
        }
        // res 计数的是之前的矩形个数,+1表示将最后的矩形计入
        return res + 1;
    }
}

性能

3106.满足距离约束且字典序最小的字符串

目标

给你一个字符串 s 和一个整数 k 。

定义函数 distance(s1, s2) ,用于衡量两个长度为 n 的字符串 s1 和 s2 之间的距离,即:

  • 字符 'a' 到 'z' 按 循环 顺序排列,对于区间 [0, n - 1] 中的 i ,计算所有「 s1[i] 和 s2[i] 之间 最小距离」的 和 。

例如,distance("ab", "cd") == 4 ,且 distance("a", "z") == 1 。

你可以对字符串 s 执行 任意次 操作。在每次操作中,可以将 s 中的一个字母 改变 为 任意 其他小写英文字母。

返回一个字符串,表示在执行一些操作后你可以得到的 字典序最小 的字符串 t ,且满足 distance(s, t) <= k 。

示例 1:

输入:s = "zbbz", k = 3
输出:"aaaz"
解释:在这个例子中,可以执行以下操作:
将 s[0] 改为 'a' ,s 变为 "abbz" 。
将 s[1] 改为 'a' ,s 变为 "aabz" 。
将 s[2] 改为 'a' ,s 变为 "aaaz" 。
"zbbz" 和 "aaaz" 之间的距离等于 k = 3 。
可以证明 "aaaz" 是在任意次操作后能够得到的字典序最小的字符串。
因此,答案是 "aaaz" 。

示例 2:

输入:s = "xaxcd", k = 4
输出:"aawcd"
解释:在这个例子中,可以执行以下操作:
将 s[0] 改为 'a' ,s 变为 "aaxcd" 。
将 s[2] 改为 'w' ,s 变为 "aawcd" 。
"xaxcd" 和 "aawcd" 之间的距离等于 k = 4 。
可以证明 "aawcd" 是在任意次操作后能够得到的字典序最小的字符串。
因此,答案是 "aawcd" 。

示例 3:

输入:s = "lol", k = 0
输出:"lol"
解释:在这个例子中,k = 0,更改任何字符都会使得距离大于 0 。
因此,答案是 "lol" 。

说明:

  • 1 <= s.length <= 100
  • 0 <= k <= 2000
  • s 只包含小写英文字母。

思路

定义两个由 a - z 组成的长度相等字符串之间的距离为相应位置上字母的最小距离,比如 az 的最小距离为1,ao 之间的距离为12,而非14,an 的距离为13,即距离的最大值为13。因此两字符相减 diff 如果大于13,应取 26 - diff

a b c d e f g h i j k l m

n o p q r s t u v w x y z

现在给定k表示字符串距离,需要我们找出与给定字符串距离为k的字典序最小的字符串。所谓字典序,先取第一个字符比较它在字母表中的排序,如果相等则比较下一个。

因此我们可以遍历给定的字符串的每一个字符,在距离范围内优先将其改为 a,如果距离还有多余,则继续改下一个字母,如果距离不够直接向下取剩余距离的字符。由于字母是首尾相接的,需要考虑是从哪边计算距离最短。第一行从前计算,第二行从后计算,或者两者都计算,比较大小决定如何处理。

代码

/**
 * @date 2024-07-27 22:22
 */
public class GetSmallestString3106 {

    public String getSmallestString(String s, int k) {
        char[] chars = s.toCharArray();
        int n = s.length();
        int i = 0;
        while (k > 0 && i < n) {
            char c = chars[i];
            int dist = Math.min('z' - c + 1, c - 'a');
            if (k < dist) {
                chars[i] = (char) (c - k);
                break;
            }
            chars[i] = 'a';
            k -= dist;
            i++;
        }

        return new String(chars);
    }

}

性能

2844.生成特殊数字的最少操作

目标

给你一个下标从 0 开始的字符串 num ,表示一个非负整数。

在一次操作中,您可以选择 num 的任意一位数字并将其删除。请注意,如果你删除 num 中的所有数字,则 num 变为 0。

返回最少需要多少次操作可以使 num 变成特殊数字。

如果整数 x 能被 25 整除,则该整数 x 被认为是特殊数字。

示例 1:

输入:num = "2245047"
输出:2
解释:删除数字 num[5] 和 num[6] ,得到数字 "22450" ,可以被 25 整除。
可以证明要使数字变成特殊数字,最少需要删除 2 位数字。

示例 2:

输入:num = "2908305"
输出:3
解释:删除 num[3]、num[4] 和 num[6] ,得到数字 "2900" ,可以被 25 整除。
可以证明要使数字变成特殊数字,最少需要删除 3 位数字。

示例 3:

输入:num = "10"
输出:1
解释:删除 num[0] ,得到数字 "0" ,可以被 25 整除。
可以证明要使数字变成特殊数字,最少需要删除 1 位数字。

说明

  • 1 <= num.length <= 100
  • num 仅由数字 '0' 到 '9' 组成
  • num 不含任何前导零

思路

有一个字符串表示的数字,每一次操作可以删除任意一个数字。问最少需要操作多少次能够使数字被25整除。

通过观察可知,能够被25整除,个位数字只能是 0 或 5。十位数字只能是 0、2、5、7 ,其中 如果 十位为 0 必须要有更高位不为0 num 不含任何前导零0、25、50、75、100、125、200、……、1000、1025、……,更高位的数字可以是任意的。如果个位是5,那么十位只能是 2、7,如果个位是 0,那么十位只能是 0、5

2908305 从末尾查找,如果保留5,需要删除中间 5 个,如果删掉5,保留0,则只需要再删除 8, 3 两个数字即可,我们应该取二者的最小值。这就是我们的贪心策略。

代码

/**
 * @date 2024-07-25 11:17
 */
public class MinimumOperations2844 {

    public int minimumOperations(String num) {
        int n = num.length();
        int res = 0;
        int cursor = n - 1;
        while (cursor >= 0 && num.charAt(cursor) != '0') {
            cursor--;
        }
        res = n - 1 - cursor;
        cursor--;
        while (cursor >= 0 && (num.charAt(cursor) != '0' && num.charAt(cursor) != '5')) {
            cursor--;
            res++;
        }

        int res5 = 0;
        cursor = n - 1;
        while (cursor >= 0 && num.charAt(cursor) != '5') {
            cursor--;
        }
        res5 = n - 1 - cursor;
        cursor--;
        while (cursor >= 0 && (num.charAt(cursor) != '2' && num.charAt(cursor) != '7')) {
            cursor--;
            res5++;
        }
        // 这里需要判断,前面个位为5,但是十位没有合法数字的情况,这时需要把5也删掉
        if (cursor < 0) {
            res5++;
        }
        return Math.min(res, res5);
    }

}

性能

2850.将石头分散到网格图的最少移动次数

目标

给你一个大小为 3 * 3 ,下标从 0 开始的二维整数矩阵 grid ,分别表示每一个格子里石头的数目。网格图中总共恰好有 9 个石头,一个格子里可能会有 多个 石头。

每一次操作中,你可以将一个石头从它当前所在格子移动到一个至少有一条公共边的相邻格子。

请你返回每个格子恰好有一个石头的 最少移动次数 。

示例 1:

输入:grid = [[1,1,0],[1,1,1],[1,2,1]]
输出:3
解释:让每个格子都有一个石头的一个操作序列为:
1 - 将一个石头从格子 (2,1) 移动到 (2,2) 。
2 - 将一个石头从格子 (2,2) 移动到 (1,2) 。
3 - 将一个石头从格子 (1,2) 移动到 (0,2) 。
总共需要 3 次操作让每个格子都有一个石头。
让每个格子都有一个石头的最少操作次数为 3 。

示例 2:

输入:grid = [[1,3,0],[1,0,0],[1,0,3]]
输出:4
解释:让每个格子都有一个石头的一个操作序列为:
1 - 将一个石头从格子 (0,1) 移动到 (0,2) 。
2 - 将一个石头从格子 (0,1) 移动到 (1,1) 。
3 - 将一个石头从格子 (2,2) 移动到 (1,2) 。
4 - 将一个石头从格子 (2,2) 移动到 (2,1) 。
总共需要 4 次操作让每个格子都有一个石头。
让每个格子都有一个石头的最少操作次数为 4 。

说明:

  • grid.length == grid[i].length == 3
  • 0 <= grid[i][j] <= 9
  • grid 中元素之和为 9 。

思路

有一个3 * 3 的二维矩阵,有9个石头散落在其中,每次可以将石头移到相邻的格子里,问每个格子一块石头最少需要移动几次。

有多余石头的格子到没有石头格子移动的次数为其曼哈顿距离要想使移动次数最小,我们只需要从没有石头的格子向四个方向查找有多余石头的格子即可

并非是沿四个方向搜索,而是BFS找最短路径。 遍历四个方向,那么只能沿着该方向查找,而BFS则是由内层向外层查找,体会二者的不同。但这题使用BFS也无法保证得到的是最小移动次数,考虑下面的情况:

从0开始取最近的并不能保证得到最优解,比如下面这种情况:

3,2,0      3,1,1      2,1,1      2,1,1      2,1,1      1,1,1
0,1,0  ->  0,1,0  ->  1,1,0  ->  1,1,1  ->  1,1,1  ->  1,1,1
0,3,0      0,3,0      0,3,0      0,2,0      1,1,0      1,1,1
       1          1          2           1          4
左下角的应该从第一个元素取:

3,2,0      3,1,1      2,1,1      2,1,1      1,1,1      1,1,1
0,1,0  ->  0,1,0  ->  1,1,0  ->  1,1,1  ->  1,1,1  ->  1,1,1
0,3,0      0,3,0      0,3,0      0,2,0      1,2,0      1,1,1
       1          1          2           2          1

尽管这题使用BFS求解不了,但还是有一些收获的。BFS很容易错写成每次从队列取一个元素,然后判断该元素是否满足条件,不满足就将其邻接节点加入队列。当需要进行层次计数的时候就不对了,应该在每次循环的第一步记录队列中元素个数 k,本次处理中就循环判断这k个元素,在循环过程中判断是否满足条件,不满足的将其邻接节点加入队列,因为我们已经在前面计数了,因此这些邻接节点将在下一次循环中处理。

如果取最近的多余石头这种贪心策略不行的话,那么问题就不在于最短路径了。而应从整体上考虑从哪里移动到哪里才是最优的,可以尝试记忆化搜索解空间。我们可以很容易枚举出哪些格子没有石头,哪些格子石头多于1个,只需枚举它们的组合并取其曼哈顿距离之和最小值即可。

这里的核心问题是如何遍历这两个列表的组合,我想到的方法就是使用回溯算法,每向下递归一层就标记为已访问,而返回时再取消其标记。并且如果不保存重复子问题的话,执行会超时。这里的重复子问题是两组数据未访问元素相同,而已访问数据的组合不同。例如: [a,b,c,d,e,f,g] [h,i,j,k,l,m,n] 前面两个元素组合 (a, h) (b, i)(a, i) (b, h) 剩余的元素的组合情况完全相同。

最终使用状态压缩与回溯解出来了。如果不记录重复的子问题的话,dfs方法要调用3705927296次,而使用记忆化搜索只需调用12868次。

官网题解也是类似的思路,只不过遍历组合的方式不同,它是固定一个列表不变,另一个进行全排列。//todo 有空再研究一下官网题解吧

代码

/**
 * @date 2024-07-20 15:55
 */
public class MinimumMoves2850 {

    public int minimumMoves_v2(int[][] grid) {
        List<int[]> zeros = new ArrayList<>();
        List<int[]> more = new ArrayList<>();
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++) {
                if (grid[i][j] == 0) {
                    zeros.add(new int[]{i, j});
                } else if (grid[i][j] > 1) {
                    for (int k = 0; k < grid[i][j] - 1; k++) {
                        more.add(new int[]{i, j});
                    }
                }
            }
        }
        int k = zeros.size();
        int res = Integer.MAX_VALUE;
        int[][] mem = new int[255][255];

        for (int i = 0; i < k; i++) {
            // 状态压缩
            int zerosVisited = 0x000000ff;
            zerosVisited ^= 1 << i;
            int[] zero = zeros.get(i);
            for (int j = 0; j < k; j++) {
                int moreVisited = 0x000000ff;
                moreVisited ^= 1 << j;
                int[] m = more.get(j);
                int distance = Math.abs(zero[0] - m[0]) + Math.abs(zero[1] - m[1]);
                res = Math.min(res, distance + dfs_v2(zeros, more, zerosVisited, moreVisited, 1, mem));
            }
        }
        return res;
    }

    public int dfs_v2(List<int[]> zeros, List<int[]> more, int zerosVisited, int moreVisited, int level, int[][] mem) {
        if (level == zeros.size()) {
            return 0;
        }
        int k = zeros.size();
        int res = Integer.MAX_VALUE;
        for (int i = 0; i < k; i++) {
            if (((zerosVisited >> i) & 1) == 0) {
                continue;
            }
            zerosVisited ^= 1 << i;
            int[] zero = zeros.get(i);
            for (int j = 0; j < k; j++) {
                if (((moreVisited >> j) & 1) == 0) {
                    continue;
                }
                moreVisited ^= 1 << j;
                int[] m = more.get(j);
                int distance = Math.abs(zero[0] - m[0]) + Math.abs(zero[1] - m[1]);
                if (mem[zerosVisited][moreVisited] == 0) {
                    // 重复的子问题是两边剩余的元素均相同
                    mem[zerosVisited][moreVisited] = dfs_v2(zeros, more, zerosVisited, moreVisited, level + 1, mem);
                }
                res = Math.min(res, distance + mem[zerosVisited][moreVisited]);
                // 回溯
                moreVisited ^= 1 << j;
            }
            zerosVisited ^= 1 << i;
        }
        return res;
    }

}

性能

3086.拾起K个1需要的最少行动次数

目标

给你一个下标从 0 开始的二进制数组 nums,其长度为 n ;另给你一个 正整数 k 以及一个 非负整数 maxChanges 。

Alice 在玩一个游戏,游戏的目标是让 Alice 使用 最少 数量的 行动 次数从 nums 中拾起 k 个 1 。游戏开始时,Alice 可以选择数组 [0, n - 1] 范围内的任何索引 aliceIndex 站立。如果 nums[aliceIndex] == 1 ,Alice 会拾起一个 1 ,并且 nums[aliceIndex] 变成0(这 不算 作一次行动)。之后,Alice 可以执行 任意数量 的 行动(包括零次),在每次行动中 Alice 必须 恰好 执行以下动作之一:

  • 选择任意一个下标 j != aliceIndex 且满足 nums[j] == 0 ,然后将 nums[j] 设置为 1 。这个动作最多可以执行 maxChanges 次。
  • 选择任意两个相邻的下标 x 和 y(|x - y| == 1)且满足 nums[x] == 1, nums[y] == 0 ,然后交换它们的值(将 nums[y] = 1 和 nums[x] = 0)。如果 y == aliceIndex,在这次行动后 Alice 拾起一个 1 ,并且 nums[y] 变成 0 。

返回 Alice 拾起 恰好 k 个 1 所需的 最少 行动次数。

示例 1:

输入:nums = [1,1,0,0,0,1,1,0,0,1], k = 3, maxChanges = 1
输出:3
解释:如果游戏开始时 Alice 在 aliceIndex == 1 的位置上,按照以下步骤执行每个动作,他可以利用 3 次行动拾取 3 个 1 :

游戏开始时 Alice 拾取了一个 1 ,nums[1] 变成了 0。此时 nums 变为 [1,0,0,0,0,1,1,0,0,1] 。
选择 j == 2 并执行第一种类型的动作。nums 变为 [1,0,1,0,0,1,1,0,0,1]
选择 x == 2 和 y == 1 ,并执行第二种类型的动作。nums 变为 [1,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [1,0,0,0,0,1,1,0,0,1] 。
选择 x == 0 和 y == 1 ,并执行第二种类型的动作。nums 变为 [0,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [0,0,0,0,0,1,1,0,0,1] 。
请注意,Alice 也可能执行其他的 3 次行动序列达成拾取 3 个 1 。

示例 2:

输入:nums = [0,0,0,0], k = 2, maxChanges = 3
输出:4
解释:如果游戏开始时 Alice 在 aliceIndex == 0 的位置上,按照以下步骤执行每个动作,他可以利用 4 次行动拾取 2 个 1 :

选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于 y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。
再次选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
再次选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。

说明:

  • 2 <= n <= 10^5
  • 0 <= nums[i] <= 1
  • 1 <= k <= 10^5
  • 0 <= maxChanges <= 10^5
  • maxChanges + sum(nums) >= k

思路

有一个二进制(元素不是0就是1)数组nums,选择一个固定的位置aliceIndex,如果该位置元素值为1,则可以拾起并将元素置0。接下来可以采取行动:

  1. 任选一个不等于aliceIndex且值为0的元素置1
  2. 将任意相邻且元素值不等的元素交换,如果其中一个位置是aliceIndex,且交换后的值为1,则可以拾起这个1并将元素置0

问恰好拾起k个1所需最小行动次数。

很明显行动1要选与aliceIndex相邻的,这样才可以用行动2将1拾起。

我们首先面对的问题是aliceIndex怎么选,要拾取1就需要将1都通过行动2移动到aliceIndex周围,如果拾取一个1的行动次数大于2的话就需要考虑使用行动1直接在aliceIndex周围设置1再拾取。

// todo

代码

性能

2734.执行子串操作后的字典序最小字符串

目标

给你一个仅由小写英文字母组成的字符串 s 。在一步操作中,你可以完成以下行为:

  • 选择 s 的任一非空子字符串,可能是整个字符串,接着将字符串中的每一个字符替换为英文字母表中的前一个字符。例如,'b' 用 'a' 替换,'a' 用 'z' 替换。

返回执行上述操作 恰好一次 后可以获得的 字典序最小 的字符串。

子字符串 是字符串中的一个连续字符序列。

现有长度相同的两个字符串 x 和 字符串 y ,在满足 x[i] != y[i] 的第一个位置 i 上,如果 x[i] 在字母表中先于 y[i] 出现,则认为字符串 x 比字符串 y 字典序更小 。

示例 1:

输入:s = "cbabc"
输出:"baabc"
解释:我们选择从下标 0 开始、到下标 1 结束的子字符串执行操作。 
可以证明最终得到的字符串是字典序最小的。

示例 2:

输入:s = "acbbc"
输出:"abaab"
解释:我们选择从下标 1 开始、到下标 4 结束的子字符串执行操作。
可以证明最终得到的字符串是字典序最小的。

示例 3:

输入:s = "leetcode"
输出:"kddsbncd"
解释:我们选择整个字符串执行操作。
可以证明最终得到的字符串是字典序最小的。

说明:

  • 1 <= s.length <= 3 * 10^5
  • s 仅由小写英文字母组成

思路

求对一个字符串的 非空子串 进行操作后字典序最小的字符串,两个字符串 第一个不同的字母 在字母表 越先出现 其字典序就越小。字符串仅由小写字母组成,可进行的操作指将子串的每一个字母替换为其在字母表中的前一个字母,a 前面的字母定义为 z

关键在于非空子串如何选,根据题意可知,如果子串不含字母 a 操作总能使字典序变小。字符串前面字符的字典序越小整个字符串的字典序就越小,因此可以从前向后遍历直到遇到字母 a 作为子串。如果字符串字母均为 a,操作总会使字典序变大,显然将最后一个 a 改为 z 可以使操作后的字符串字典序最小。

代码

/**
 * @date 2024-06-27 0:05
 */
public class SmallestString2734 {

    public String smallestString_v1(String s) {
        int i = 0;
        int n = s.length();
        char[] chars = s.toCharArray();
        while (i < n && chars[i] == 'a') {
            i++;
        }
        while (i < n && chars[i] != 'a') {
            chars[i++]--;
        }
        if (i == n && s.charAt(n - 1) == 'a') {
            chars[n - 1] = 'z';
        }
        return new String(chars);
    }

    public String smallestString_v2(String s) {
        int i = 0;
        int n = s.length();
        StringBuilder sb = new StringBuilder(s);
        while (i < n && s.charAt(i) == 'a') {
            i++;
        }
        if (i == n) {
            sb.setCharAt(n - 1, 'z');
            return sb.toString();
        }
        while (i < n && s.charAt(i) != 'a') {
            sb.setCharAt(i, (char) (s.charAt(i++) - 1));
        }
        return sb.toString();
    }
}

性能

使用 StringBuilder 显示用时更少,我试了一下与if判断的位置没关系,按道理来说直接数组访问比方法调用开销更小,new StringBuilder(s)s.toCharArray 都进行了数组拷贝。我能想到的解释就是大家都用的StringBuilder,然后这段代码被JIT编译器优化。