3083.字符串及其反转中是否存在同一子字符串

目标

给你一个字符串 s ,请你判断字符串 s 是否存在一个长度为 2 的子字符串,在其反转后的字符串中也出现。

如果存在这样的子字符串,返回 true;如果不存在,返回 false 。

示例 1:

输入:s = "leetcode"
输出:true
解释:子字符串 "ee" 的长度为 2,它也出现在 reverse(s) == "edocteel" 中。

示例 2:

输入:s = "abcba"
输出:true
解释:所有长度为 2 的子字符串 "ab"、"bc"、"cb"、"ba" 也都出现在 reverse(s) == "abcba" 中。

示例 3:

输入:s = "abcd"
输出:false
解释:字符串 s 中不存在满足「在其反转后的字符串中也出现」且长度为 2 的子字符串。

说明:

  • 1 <= s.length <= 100
  • 字符串 s 仅由小写英文字母组成。

思路

判断字符串 s 中长度为 2 的子串是否在其反转后的字符串中出现,返回 truefalse

直接的想法是将 s 中所有长度为 2 的子串放入 hashset,然后判断倒序字符串的长度为 2 的子串是否在集合中。

网友题解使用 int[] 记录所有出现过的长度为 2 的子串,下标表示第一个字母,第二个字母则使用 int 值的 bit 位表示。

代码


/**
 * @date 2024-12-26 8:47
 */
public class IsSubstringPresent3083 {

    public boolean isSubstringPresent(String s) {
        int n = s.length();
        int[] exists = new int[26];
        for (int i = 0; i < n - 1; i++) {
            int a = s.charAt(i) - 'a';
            int b = s.charAt(i + 1) - 'a';
            exists[a] |= 1 << b;
            if ((exists[b] >> a & 1) == 1) {
                return true;
            }
        }
        return false;
    }

}

性能

600.不含连续1的非负整数

目标

给定一个正整数 n ,请你统计在 [0, n] 范围的非负整数中,有多少个整数的二进制表示中不存在 连续的 1 。

示例 1:

输入: n = 5
输出: 5
解释: 
下面列出范围在 [0, 5] 的非负整数与其对应的二进制表示:
0 : 0
1 : 1
2 : 10
3 : 11
4 : 100
5 : 101
其中,只有整数 3 违反规则(有两个连续的 1 ),其他 5 个满足规则。

示例 2:

输入: n = 1
输出: 2

示例 3:

输入: n = 2
输出: 3

说明:

  • 1 <= n <= 10^9

思路

给定一个正整数n,求 [0, n] 范围内整数的二进制表示中不含连续1的整数个数。

由于n最大10^9,如果挨个判断整数是否含连续的bit 1,实际复杂度为O(31n),超时。

既然暴力解不行只能考虑其它方法。分析n的二进制表示,将问题转换为一定限制条件下的排列组合问题。求得二进制表示之后可以使用dfs来计算组合数。如果不使用记忆化搜索同样会超时,这里使用状态压缩来记录重复的子问题。状态指方法参数的组合,如果cur为1,则将高位置1与index相与,第二个维度0表示不可以将0改为1,1表示可以将0改为1。

官网题解使用的是递推。

代码

/**
 * @date 2024-08-05 10:20
 */
public class FindIntegers600 {

    public int findIntegers(int n) {
        List<Integer> bitmap = new ArrayList<>(32);
        while (n > 0) {
            bitmap.add(n & 1);
            n >>= 1;
        }
        int[][] mem = new int[(1 << 5) | (bitmap.size() - 1)][2];
        return dfs(0, bitmap, bitmap.size() - 1, false, mem);
    }

    public int dfs(int pre, List<Integer> bitmap, int index, boolean zeroToOne, int[][] mem) {
        int cur = bitmap.get(index);
        if (index == 0) {
            return pre == 0 && (cur == 1 || zeroToOne) ? 2 : 1;
        }
        int res = 0;
        index--;
        int size = bitmap.size();
        int key = (1 << 5) | index;
        int zto = zeroToOne ? 1 : 0;
        if (pre == 1 && cur == 1) {
            // 如果前一个是1,当前也是1,将1改为0,允许后续的0改为1
            if (mem[index][1] == 0) {
                mem[index][1] = dfs(cur - 1, bitmap, index, true, mem);
            }
            res = mem[index][1];
        } else if (pre == 0 && cur == 1) {
            // 如果前一个是0,当前是1,将1改为0,允许后续的0改为1,或者当前不变,后续是否允许0变1取决于zeroToOne
            if (mem[index][1] == 0) {
                mem[index][1] = dfs(cur - 1, bitmap, index, true, mem);
            }
            if (mem[key][zto] == 0) {
                mem[key][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][1] + mem[key][zto];
        } else if (pre == 0 && cur == 0) {
            // 如果前一个是0,当前是0,当前不变,后续是否允0变1许取决于zeroToOne,如果当前zeroToOne为true,将0改为1
            if (mem[index][zto] == 0) {
                mem[index][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][zto];
            if (zeroToOne) {
                if (mem[key][zto] == 0) {
                    mem[key][zto] = dfs(cur + 1, bitmap, index, zeroToOne, mem);
                }
                res += mem[key][zto];
            }
        } else {
            // 如果前一个是1,当前是0,当前不变,后续是否允许0变1取决于zeroToOne
            if (mem[index][zto] == 0) {
                mem[index][zto] = dfs(cur, bitmap, index, zeroToOne, mem);
            }
            res = mem[index][zto];
        }
        return res;
    }

}

性能

2850.将石头分散到网格图的最少移动次数

目标

给你一个大小为 3 * 3 ,下标从 0 开始的二维整数矩阵 grid ,分别表示每一个格子里石头的数目。网格图中总共恰好有 9 个石头,一个格子里可能会有 多个 石头。

每一次操作中,你可以将一个石头从它当前所在格子移动到一个至少有一条公共边的相邻格子。

请你返回每个格子恰好有一个石头的 最少移动次数 。

示例 1:

输入:grid = [[1,1,0],[1,1,1],[1,2,1]]
输出:3
解释:让每个格子都有一个石头的一个操作序列为:
1 - 将一个石头从格子 (2,1) 移动到 (2,2) 。
2 - 将一个石头从格子 (2,2) 移动到 (1,2) 。
3 - 将一个石头从格子 (1,2) 移动到 (0,2) 。
总共需要 3 次操作让每个格子都有一个石头。
让每个格子都有一个石头的最少操作次数为 3 。

示例 2:

输入:grid = [[1,3,0],[1,0,0],[1,0,3]]
输出:4
解释:让每个格子都有一个石头的一个操作序列为:
1 - 将一个石头从格子 (0,1) 移动到 (0,2) 。
2 - 将一个石头从格子 (0,1) 移动到 (1,1) 。
3 - 将一个石头从格子 (2,2) 移动到 (1,2) 。
4 - 将一个石头从格子 (2,2) 移动到 (2,1) 。
总共需要 4 次操作让每个格子都有一个石头。
让每个格子都有一个石头的最少操作次数为 4 。

说明:

  • grid.length == grid[i].length == 3
  • 0 <= grid[i][j] <= 9
  • grid 中元素之和为 9 。

思路

有一个3 * 3 的二维矩阵,有9个石头散落在其中,每次可以将石头移到相邻的格子里,问每个格子一块石头最少需要移动几次。

有多余石头的格子到没有石头格子移动的次数为其曼哈顿距离要想使移动次数最小,我们只需要从没有石头的格子向四个方向查找有多余石头的格子即可

并非是沿四个方向搜索,而是BFS找最短路径。 遍历四个方向,那么只能沿着该方向查找,而BFS则是由内层向外层查找,体会二者的不同。但这题使用BFS也无法保证得到的是最小移动次数,考虑下面的情况:

从0开始取最近的并不能保证得到最优解,比如下面这种情况:

3,2,0      3,1,1      2,1,1      2,1,1      2,1,1      1,1,1
0,1,0  ->  0,1,0  ->  1,1,0  ->  1,1,1  ->  1,1,1  ->  1,1,1
0,3,0      0,3,0      0,3,0      0,2,0      1,1,0      1,1,1
       1          1          2           1          4
左下角的应该从第一个元素取:

3,2,0      3,1,1      2,1,1      2,1,1      1,1,1      1,1,1
0,1,0  ->  0,1,0  ->  1,1,0  ->  1,1,1  ->  1,1,1  ->  1,1,1
0,3,0      0,3,0      0,3,0      0,2,0      1,2,0      1,1,1
       1          1          2           2          1

尽管这题使用BFS求解不了,但还是有一些收获的。BFS很容易错写成每次从队列取一个元素,然后判断该元素是否满足条件,不满足就将其邻接节点加入队列。当需要进行层次计数的时候就不对了,应该在每次循环的第一步记录队列中元素个数 k,本次处理中就循环判断这k个元素,在循环过程中判断是否满足条件,不满足的将其邻接节点加入队列,因为我们已经在前面计数了,因此这些邻接节点将在下一次循环中处理。

如果取最近的多余石头这种贪心策略不行的话,那么问题就不在于最短路径了。而应从整体上考虑从哪里移动到哪里才是最优的,可以尝试记忆化搜索解空间。我们可以很容易枚举出哪些格子没有石头,哪些格子石头多于1个,只需枚举它们的组合并取其曼哈顿距离之和最小值即可。

这里的核心问题是如何遍历这两个列表的组合,我想到的方法就是使用回溯算法,每向下递归一层就标记为已访问,而返回时再取消其标记。并且如果不保存重复子问题的话,执行会超时。这里的重复子问题是两组数据未访问元素相同,而已访问数据的组合不同。例如: [a,b,c,d,e,f,g] [h,i,j,k,l,m,n] 前面两个元素组合 (a, h) (b, i)(a, i) (b, h) 剩余的元素的组合情况完全相同。

最终使用状态压缩与回溯解出来了。如果不记录重复的子问题的话,dfs方法要调用3705927296次,而使用记忆化搜索只需调用12868次。

官网题解也是类似的思路,只不过遍历组合的方式不同,它是固定一个列表不变,另一个进行全排列。//todo 有空再研究一下官网题解吧

代码

/**
 * @date 2024-07-20 15:55
 */
public class MinimumMoves2850 {

    public int minimumMoves_v2(int[][] grid) {
        List<int[]> zeros = new ArrayList<>();
        List<int[]> more = new ArrayList<>();
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++) {
                if (grid[i][j] == 0) {
                    zeros.add(new int[]{i, j});
                } else if (grid[i][j] > 1) {
                    for (int k = 0; k < grid[i][j] - 1; k++) {
                        more.add(new int[]{i, j});
                    }
                }
            }
        }
        int k = zeros.size();
        int res = Integer.MAX_VALUE;
        int[][] mem = new int[255][255];

        for (int i = 0; i < k; i++) {
            // 状态压缩
            int zerosVisited = 0x000000ff;
            zerosVisited ^= 1 << i;
            int[] zero = zeros.get(i);
            for (int j = 0; j < k; j++) {
                int moreVisited = 0x000000ff;
                moreVisited ^= 1 << j;
                int[] m = more.get(j);
                int distance = Math.abs(zero[0] - m[0]) + Math.abs(zero[1] - m[1]);
                res = Math.min(res, distance + dfs_v2(zeros, more, zerosVisited, moreVisited, 1, mem));
            }
        }
        return res;
    }

    public int dfs_v2(List<int[]> zeros, List<int[]> more, int zerosVisited, int moreVisited, int level, int[][] mem) {
        if (level == zeros.size()) {
            return 0;
        }
        int k = zeros.size();
        int res = Integer.MAX_VALUE;
        for (int i = 0; i < k; i++) {
            if (((zerosVisited >> i) & 1) == 0) {
                continue;
            }
            zerosVisited ^= 1 << i;
            int[] zero = zeros.get(i);
            for (int j = 0; j < k; j++) {
                if (((moreVisited >> j) & 1) == 0) {
                    continue;
                }
                moreVisited ^= 1 << j;
                int[] m = more.get(j);
                int distance = Math.abs(zero[0] - m[0]) + Math.abs(zero[1] - m[1]);
                if (mem[zerosVisited][moreVisited] == 0) {
                    // 重复的子问题是两边剩余的元素均相同
                    mem[zerosVisited][moreVisited] = dfs_v2(zeros, more, zerosVisited, moreVisited, level + 1, mem);
                }
                res = Math.min(res, distance + mem[zerosVisited][moreVisited]);
                // 回溯
                moreVisited ^= 1 << j;
            }
            zerosVisited ^= 1 << i;
        }
        return res;
    }

}

性能

2959.关闭分部的可行集合数目

目标

一个公司在全国有 n 个分部,它们之间有的有道路连接。一开始,所有分部通过这些道路两两之间互相可以到达。

公司意识到在分部之间旅行花费了太多时间,所以它们决定关闭一些分部(也可能不关闭任何分部),同时保证剩下的分部之间两两互相可以到达且最远距离不超过 maxDistance 。

两个分部之间的 距离 是通过道路长度之和的 最小值 。

给你整数 n ,maxDistance 和下标从 0 开始的二维整数数组 roads ,其中 roads[i] = [ui, vi, wi] 表示一条从 ui 到 vi 长度为 wi的 无向 道路。

请你返回关闭分部的可行方案数目,满足每个方案里剩余分部之间的最远距离不超过 maxDistance。

注意,关闭一个分部后,与之相连的所有道路不可通行。

注意,两个分部之间可能会有多条道路。

示例 1:

输入:n = 3, maxDistance = 5, roads = [[0,1,2],[1,2,10],[0,2,10]]
输出:5
解释:可行的关闭分部方案有:
- 关闭分部集合 [2] ,剩余分部为 [0,1] ,它们之间的距离为 2 。
- 关闭分部集合 [0,1] ,剩余分部为 [2] 。
- 关闭分部集合 [1,2] ,剩余分部为 [0] 。
- 关闭分部集合 [0,2] ,剩余分部为 [1] 。
- 关闭分部集合 [0,1,2] ,关闭后没有剩余分部。
总共有 5 种可行的关闭方案。

示例 2:

输入:n = 3, maxDistance = 5, roads = [[0,1,20],[0,1,10],[1,2,2],[0,2,2]]
输出:7
解释:可行的关闭分部方案有:
- 关闭分部集合 [] ,剩余分部为 [0,1,2] ,它们之间的最远距离为 4 。
- 关闭分部集合 [0] ,剩余分部为 [1,2] ,它们之间的距离为 2 。
- 关闭分部集合 [1] ,剩余分部为 [0,2] ,它们之间的距离为 2 。
- 关闭分部集合 [0,1] ,剩余分部为 [2] 。
- 关闭分部集合 [1,2] ,剩余分部为 [0] 。
- 关闭分部集合 [0,2] ,剩余分部为 [1] 。
- 关闭分部集合 [0,1,2] ,关闭后没有剩余分部。
总共有 7 种可行的关闭方案。

示例 3:

输入:n = 1, maxDistance = 10, roads = []
输出:2
解释:可行的关闭分部方案有:
- 关闭分部集合 [] ,剩余分部为 [0] 。
- 关闭分部集合 [0] ,关闭后没有剩余分部。
总共有 2 种可行的关闭方案。

说明:

  • 1 <= n <= 10
  • 1 <= maxDistance <= 105
  • 0 <= roads.length <= 1000
  • roads[i].length == 3
  • 0 <= ui, vi <= n - 1
  • ui != vi
  • 1 <= wi <= 1000
  • 一开始所有分部之间通过道路互相可以到达。

思路

没时间做了// todo

代码

性能

2741.特别的排列

目标

给你一个下标从 0 开始的整数数组 nums ,它包含 n 个 互不相同 的正整数。如果 nums 的一个排列满足以下条件,我们称它是一个特别的排列:

  • 对于 0 <= i < n - 1 的下标 i ,要么 nums[i] % nums[i+1] == 0 ,要么 nums[i+1] % nums[i] == 0 。

请你返回特别排列的总数目,由于答案可能很大,请将它对 109 + 7 取余 后返回。

示例 1:

输入:nums = [2,3,6]
输出:2
解释:[3,6,2] 和 [2,6,3] 是 nums 两个特别的排列。

示例 2:

输入:nums = [1,4,3]
输出:2
解释:[3,1,4] 和 [4,1,3] 是 nums 两个特别的排列。

说明:

  • 2 <= nums.length <= 14
  • 1 <= nums[i] <= 10^9

思路

有一个互不相同的正整数数组,问使得相邻元素可以被整除(对于相邻元素a % b == 0 || b % a == 0)的排列有多少种。

排列数的计算需要使用dfs,但如果不保存重复子问题的话会超时。

难点在于是否将保存的结果计入,例如 [2,6,3],虽然dfs 2 -> 6 -> 36 -> 2 -> 3有重复的子问题3,但是后者不符合题目条件。

// todo

代码

性能

1542.找出最长的超赞子字符串

目标

给你一个字符串 s 。请返回 s 中最长的 超赞子字符串 的长度。

「超赞子字符串」需满足满足下述两个条件:

  • 该字符串是 s 的一个非空子字符串
  • 进行任意次数的字符交换后,该字符串可以变成一个回文字符串

示例 1:

输入:s = "3242415"
输出:5
解释:"24241" 是最长的超赞子字符串,交换其中的字符后,可以得到回文 "24142"

示例 2:

输入:s = "12345678"
输出:1

示例 3:

输入:s = "213123"
输出:6
解释:"213123" 是最长的超赞子字符串,交换其中的字符后,可以得到回文 "231132"

示例 4:

输入:s = "00"
输出:2

说明:

  • 1 <= s.length <= 10^5
  • s 仅由数字组成

思路

卡在152/153超出时间限制,使用的是滑动窗口。

152测试用例是9999个1,9999个2,......,9999个9。

看了题解使用0-9十个数字保存奇偶性想到了,子串最多只包含一个奇数字符也想到了,使用前缀和也想到了,但是没想到将前缀和的状态压缩保存并通过哈希表记录。

代码

// todo

性能