685.冗余连接II

目标

在本问题中,有根树指满足以下条件的 有向 图。该树只有一个根节点,所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节点都有且只有一个父节点,而根节点没有父节点。

输入一个有向图,该图由一个有着 n 个节点(节点值不重复,从 1 到 n)的树及一条附加的有向边构成。附加的边包含在 1 到 n 中的两个不同顶点间,这条附加的边不属于树中已存在的边。

结果图是一个以边组成的二维数组 edges 。 每个元素是一对 [ui, vi],用以表示 有向 图中连接顶点 ui 和顶点 vi 的边,其中 ui 是 vi 的一个父节点。

返回一条能删除的边,使得剩下的图是有 n 个节点的有根树。若有多个答案,返回最后出现在给定二维数组的答案。

示例 1:

输入:edges = [[1,2],[1,3],[2,3]]
输出:[2,3]

示例 2:

输入:edges = [[1,2],[2,3],[3,4],[4,1],[1,5]]
输出:[4,1]

说明:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ui, vi <= n

思路

有一颗 n 个节点的树,节点编号 1 ~ n。使用 edges 表示向树中两个没有直接连接的节点之间加一条边之后的边的集合,找出一条可以删除的边使得 edges 变为一颗有 n 个节点的树。如果有多种选择,返回 edges 中最后出现的那个,即下标最大的边。与 冗余连接 不同的是 edges有向边 的集合。

如果直接使用昨天无向图寻找环的做法会有两个问题:

  • 无法处理 a -> b, b -> a 的情况,因为在无向图中为了防止环,直接回避了这种情况
  • 并不是删去环上任意一条边都可以的,因为边是有向的,如果某个节点出现两个父节点,那么一定要删去以该节点为终点的边

官网题解使用的还是并查集。// todo

代码


/**
 * @date 2024-10-28 8:51
 */
public class FindRedundantDirectedConnection685 {

    List<Integer>[] g;
    Set<Integer> loop;
    List<Integer> path;
    int start;
    int end;

    public int[] findRedundantDirectedConnection(int[][] edges) {
        int n = edges.length;
        g = new List[n + 1];
        for (int i = 0; i <= n; i++) {
            g[i] = new ArrayList<>();
        }
        int[] degree = new int[n + 1];
        Set<Integer> e = new HashSet<>(n);
        int end = -1;
        int[] self = null;
        for (int[] edge : edges) {
            int from = edge[0];
            int to = edge[1];
            int fromto = from << 10 | to;
            int tofrom = to << 10 | from;
            if (e.contains(fromto)) {
                self = new int[]{from, to};
            }
            e.add(fromto);
            e.add(tofrom);
            g[from].add(to);
            g[to].add(from);
            if (degree[to] == 1) {
                end = to;
            } else {
                degree[to]++;
            }
        }

        if (self != null) {
            if (end == -1) {
                for (int i = n - 1; i >= 0; i--) {
                    if ((self[0] == edges[i][0] && edges[i][1] == self[1])
                            || (self[0] == edges[i][1] && edges[i][0] == self[1])) {
                        return edges[i];
                    }
                }
            } else {
                return new int[]{self[0] == end ? self[1] : self[0], end};
            }

        }

        loop = new HashSet<>(n);
        path = new ArrayList<>();
        loop.add(1);
        path.add(1);
        dfs(0, 1);
        loop = new HashSet<>();
        for (int i = path.size() - 1; i >= 0; i--) {
            loop.add(path.get(i));
            if (start == path.get(i)) {
                break;
            }
        }
        if (end == -1) {
            for (int i = n - 1; i >= 0; i--) {
                if (loop.contains(edges[i][0]) && loop.contains(edges[i][1])) {
                    return edges[i];
                }
            }
        } else {
            for (int i = n - 1; i >= 0; i--) {
                if (edges[i][1] == end && loop.contains(edges[i][0])) {
                    return edges[i];
                }
            }
        }

        return null;
    }

    private boolean dfs(int parent, int current) {
        for (Integer next : g[current]) {
            if (next == parent) {
                continue;
            }
            if (loop.contains(next)) {
                start = next;
                return true;
            } else {
                loop.add(next);
                path.add(next);
                if (dfs(current, next)) {
                    return true;
                }
                path.remove(path.size() - 1);
                loop.remove(next);
            }
        }
        return false;
    }

}

性能

684.冗余连接

目标

树可以看成是一个连通且 无环 的 无向 图。

给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。

请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的那个。

示例 1:

输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]

示例 2:

输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]

说明:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ai < bi <= edges.length
  • ai != bi
  • edges 中无重复元素
  • 给定的图是连通的

思路

有一颗 n 个节点的树,节点编号 1 ~ n。使用 edges 表示向树中两个没有直接连接的节点之间加一条边之后的边的集合,找出一条可以删除的边使得 edges 变为一颗有 n 个节点的树。如果有多种选择,返回 edges 中最后出现的那个,即下标最大的边。

我们可以选择一个根节点,比如从节点 1 出发,使用回溯记录已经访问过的节点,如果发现回到已访问过的非父节点说明出现了环。如果只是寻找环的上的任一条边的话,直接返回即可。

麻烦点在于题目要求返回 edges 中最后出现的边,因此我们需要记录访问的路径,从环开始的节点往后的节点都是在环上的。最后从后向前遍历 edges 找到第一个两端点都在环上的边。

官网题解使用的是并查集。// todo

代码


/**
 * @date 2024-10-27 16:34
 */
public class FindRedundantConnection684 {
    List<Integer>[] g;
    Set<Integer> loop;
    List<Integer> path;
    int start;

    public int[] findRedundantConnection(int[][] edges) {
        int n = edges.length;
        g = new List[n + 1];
        for (int i = 0; i <= n; i++) {
            g[i] = new ArrayList<>();
        }
        for (int[] edge : edges) {
            g[edge[0]].add(edge[1]);
            g[edge[1]].add(edge[0]);
        }
        loop = new HashSet<>(n);
        path = new ArrayList<>();
        dfs(0, 1);
        loop = new HashSet<>();
        for (int i = path.size() - 1; i >= 0; i--) {
            loop.add(path.get(i));
            if (start == path.get(i)) {
                break;
            }
        }
        for (int i = n - 1; i >= 0; i--) {
            if (loop.contains(edges[i][0]) && loop.contains(edges[i][1])) {
                return edges[i];
            }
        }
        return null;
    }

    private boolean dfs(int parent, int current) {
        for (Integer next : g[current]) {
            if (next == parent) {
                continue;
            }
            if (loop.contains(next)) {
                start = next;
                return true;
            } else {
                loop.add(next);
                path.add(next);
                if (dfs(current, next)) {
                    return true;
                }
                path.remove(path.size() - 1);
                loop.remove(next);
            }
        }
        return false;
    }

}

性能

139.单词拆分

目标

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。

注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

示例 1:

输入: s = "leetcode", wordDict = ["leet", "code"]
输出: true
解释: 返回 true 因为 "leetcode" 可以由 "leet" 和 "code" 拼接成。

示例 2:

输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true
解释: 返回 true 因为 "applepenapple" 可以由 "apple" "pen" "apple" 拼接成。注意,你可以重复使用字典中的单词。

示例 3:

输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false

说明:

  • 1 <= s.length <= 300
  • 1 <= wordDict.length <= 1000
  • 1 <= wordDict[i].length <= 20
  • s 和 wordDict[i] 仅由小写英文字母组成
  • wordDict 中的所有字符串 互不相同

思路

已知一个字符串列表 wordDict 和一个字符串 s,问能否用列表中的元素拼成该字符串,列表中的元素可以重复使用。

很明显需要使用动态规划来求解,假设当前列表元素 word 的长度为 l,子字符串 sub 的长度为 i,如果 sub.substring(0, i-l) 能由字典中的词拼成并且 word.equals(sub.substring(i-l, l)) 那么 sub 也能由字典中的词拼成。

代码

/**
 * @date 2024-06-23 19:58
 */
public class WordBreak139 {
    public boolean wordBreak(String s, List<String> wordDict) {
        int n = s.length();
        boolean[] dp = new boolean[n + 1];
        dp[0] = true;
        for (int i = 1; i <= n; i++) {
            for (String word : wordDict) {
                int length = word.length();
                if (length <= i && dp[i - length] && word.equals(s.substring(i - length, i))) {
                    dp[i] = true;
                }
            }
        }
        return dp[n];
    }

    public boolean wordBreak_v1(String s, List<String> wordDict) {
        int n = s.length();
        char[] mem = new char[n + 1];
        Arrays.fill(mem, '2');
        return dfs(s, 0, wordDict, mem) == '1';
    }

    public char dfs(String s, int i, List<String> wordDict, char[] mem) {
        int n = s.length();
        if (i == n) {
            return '1';
        }
        if (mem[i] != '2') {
            return mem[i];
        }
        for (String word : wordDict) {
            if (s.startsWith(word, i) && '1' == dfs(s, i + word.length(), wordDict, mem)) {
                return mem[i] = '1';
            }
        }
        return mem[i] = '0';
    }
}

性能

最快的解法是使用记忆化搜索,可以剪枝缩小搜索范围。

1766.互质树

目标

给你一个 n 个节点的树(也就是一个无环连通无向图),节点编号从 0 到 n - 1 ,且恰好有 n - 1 条边,每个节点有一个值。树的 根节点 为 0 号点。

给你一个整数数组 nums 和一个二维数组 edges 来表示这棵树。nums[i] 表示第 i 个点的值,edges[j] = [uj, vj] 表示节点 uj 和节点 vj 在树中有一条边。

当 gcd(x, y) == 1 ,我们称两个数 x 和 y 是 互质的 ,其中 gcd(x, y) 是 x 和 y 的 最大公约数 。

从节点 i 到 根 最短路径上的点都是节点 i 的祖先节点。一个节点 不是 它自己的祖先节点。

请你返回一个大小为 n 的数组 ans ,其中 ans[i]是离节点 i 最近的祖先节点且满足 nums[i] 和 nums[ans[i]] 是 互质的 ,如果不存在这样的祖先节点,ans[i] 为 -1 。

说明:

  • nums.length == n
  • 1 <= nums[i] <= 50
  • 1 <= n <= 10^5
  • edges.length == n - 1
  • edges[j].length == 2
  • 0 <= uj, vj < n
  • uj != vj

思路

今天这道题超时了,看了答案才发现节点值不超过50。没有注意到这个点,答案是先计算1到50内每个数字互质的数字列表。然后在dfs的时候记录节点值的最大深度,以及最近的编号。

我是直接记录了parent数组,一步一步向上找,在第35/37个案例超时了,这棵树是单链,并且除了根节点,向上找都不互质,只能从叶子找到根。

这样在递归中套递归直接堆栈溢出了。后来又将这两个递归分开,不溢出了,但还是超时。

后来又试图利用已求得的结果,记录了value -> 最近互质父节点编号的映射,错误地认为如果值相等就可以直接返回这个编号。其实是不对的,因为这二者之间的父节点也可能与当前节点互质。

其实我想到了应该维护一个去重的父节点序列,但是今天没时间了,只能去看答案了。预处理这个点没有想到,记录值的最大深度与最近编号这个也不好想,也许时间充裕可能会想到吧。

好多经过深度思考得到的复杂的算法,时间久了就会忘记许多细节。没必要非得自己想出来,有这时间多看看算法书进步的更快吧。

代码

// todo

性能

// todo

1026.节点与其祖先之间的最大差值

目标

给定二叉树的根节点 root,找出存在于 不同 节点 A 和 B 之间的最大值 V,其中 V = |A.val - B.val|,且 A 是 B 的祖先。

(如果 A 的任何子节点之一为 B,或者 A 的任何子节点是 B 的祖先,那么我们认为 A 是 B 的祖先)

说明:

  • 树中的节点数在 2 到 5000 之间。
  • 0 <= Node.val <= 10^5

思路

这道题还是挺直观的,求节点与其祖先之间的最大差值。直接深度优先遍历,记录路径上的最大与最小值,同时计算最大差值即可。

代码

/**
 * @date 2024-04-05 0:13
 */
public class MaxAncestorDiff1026 {

    int res = 0;

    public int maxAncestorDiff(TreeNode root) {
        dfs(root, root.val, root.val);
        return res;
    }

    public void dfs(TreeNode node, int max, int min) {
        if (node == null) {
            return;
        }
        max = Math.max(node.val, max);
        min = Math.min(node.val, min);
        res = Math.max(res, max - min);
        dfs(node.left, max, min);
        dfs(node.right, max, min);
    }
}

性能

1261.在受污染的二叉树中查找元素

目标

给出一个满足下述规则的二叉树:

  1. root.val == 0
  2. 如果 treeNode.val == x 且 treeNode.left != null,那么 treeNode.left.val == 2 * x + 1
  3. 如果 treeNode.val == x 且 treeNode.right != null,那么 treeNode.right.val == 2 * x + 2

现在这个二叉树受到「污染」,所有的 treeNode.val 都变成了 -1。

请你先还原二叉树,然后实现 FindElements 类:

  • FindElements(TreeNode* root) 用受污染的二叉树初始化对象,你需要先把它还原。
  • bool find(int target) 判断目标值 target 是否存在于还原后的二叉树中并返回结果。

说明:

  • TreeNode.val == -1
  • 二叉树的高度不超过 20
  • 节点的总数在 [1, 10^4] 之间
  • 调用 find() 的总次数在 [1, 10^4] 之间
  • 0 <= target <= 10^6

思路

dfs还原节点val,并将其加入到Hash表中,直接contains判断。

这个题被标为medium,估计是想让我们自己实现Hash表来查找元素吧。

代码

/**
 * @date 2024-03-12 2:41
 */
public class FindElements {
    Set<Integer> elements;

    public FindElements(TreeNode root) {
        elements = new HashSet<>();
        recover(root, 0);
    }

    public void recover(TreeNode root, int value) {
        if (root == null) {
            return;
        }
        root.val = value;
        elements.add(value);
        recover(root.left, 2 * value + 1);
        recover(root.right, 2 * value + 2);
    }

    public boolean find(int target) {
        return elements.contains(target);
    }
}

性能

2368.受限条件下可到达节点的数目

目标

现有一棵由 n 个节点组成的无向树,节点编号从 0 到 n - 1 ,共有 n - 1 条边。

给你一个二维整数数组 edges ,长度为 n - 1 ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条边。另给你一个整数数组 restricted 表示 受限 节点。

在不访问受限节点的前提下,返回你可以从节点 0 到达的 最多 节点数目。

注意,节点 0 不 会标记为受限节点。

思路

自然的想法是构建图,将受限节点从中删除,然后深度优先遍历,同时记录节点个数。这里构建的图主要是为了获取其连通节点进行dfs,HashSet不太适合。因为数据可能并不是连续存储的,要先计算元素的Hash值,然后从桶中取出链表或者红黑树,才能找到元素。在本例中,性能会下降一倍。

代码

/**
 * @date 2024-03-02 15:39
 */
public class ReachableNodes {
    public int res = 1;
    boolean[] isRestricted;

    public int reachableNodes(int n, int[][] edges, int[] restricted) {
        List<Integer>[] g = new ArrayList[edges.length + 1];
        isRestricted = new boolean[edges.length + 1];
        for (int i : restricted) {
            isRestricted[i] = true;
        }
        for (int i = 0; i < g.length; i++) {
            g[i] = new ArrayList<>();
        }
        for (int[] edge : edges) {
            if (isRestricted[edge[0]] || isRestricted[edge[1]]) {
                continue;
            }
            g[edge[0]].add(edge[1]);
            g[edge[1]].add(edge[0]);
        }
        dfs(0, -1, g);
        return res;
    }

    public void dfs(int root, int parent, List<Integer>[] g) {
        for (Integer n : g[root]) {
            if (n == parent) {
                continue;
            }
            res++;
            dfs(n, root, g);
        }
    }
}

性能

看了官网的答案还可以使用并查集,耗时只要10ms,有时间可以看看。