2639.查询网格图中每一列的宽度

目标

给你一个下标从 0 开始的 m * n 整数矩阵 grid 。矩阵中某一列的宽度是这一列数字的最大 字符串长度 。

  • 比方说,如果 grid = [[-10], [3], [12]] ,那么唯一一列的宽度是 3 ,因为 -10 的字符串长度为 3 。

请你返回一个大小为 n 的整数数组 ans ,其中 ans[i] 是第 i 列的宽度。

一个有 len 个数位的整数 x ,如果是非负数,那么 字符串长度 为 len ,否则为 len + 1 。

示例 1:

输入:grid = [[1],[22],[333]]
输出:[3]
解释:第 0 列中,333 字符串长度为 3 。

示例 2:

输入:grid = [[-15,1,3],[15,7,12],[5,6,-2]]
输出:[3,1,2]
解释:
第 0 列中,只有 -15 字符串长度为 3 。
第 1 列中,所有整数的字符串长度都是 1 。
第 2 列中,12 和 -2 的字符串长度都为 2 。

说明:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • -10^9 <= grid[r][c] <= 10^9

思路

这个题核心就是如何计算数字的长度。我们可以枚举 9, 99, 999, 9999, 99999, 999999, 9999999, 99999999, 999999999, Integer.MAX_VALUE,分别与这些值比较,Integer.stringSize就是如此实现的。对于负数需要将长度加1 int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);

也可以循环除以10直到0来计算长度。一个优化的点是不必求每一个数的长度,只需要求出最大值 max 与 最小值 min的长度即可。网友还提供了一个小技巧可以减少对较小值的长度计算。选取 max/10-min 中的较大值来计算长度 l,取 l+1。解释如下:如果 min > 0 那么 -min < 0,我们取到 max/10 的长度,所以长度为 l+1。如果 min < 0,并且 -min > max/10,我们取到 -min,长度需要加上负号,即 l+1。这里需要解释一下 -min < max && -min > max/10 的情况,这时 max 的长度与 -min 的长度加1 是相同的。而如果 min < 0,且 -min < max/10,取 max/10 长度减小了1,所以取 l+1

代码

/**
 * @date 2024-04-27 18:39
 */
public class FindColumnWidth2639 {

    int[] sizeTable = {9, 99, 999, 9999, 99999, 999999, 9999999,
            99999999, 999999999, Integer.MAX_VALUE};

    int stringSize(int x) {
        int j;
        if (x < 0) {
            x = -x;
            j = 2;
        } else {
            j = 1;
        }
        for (int i = 0; ; i++) {
            if (x <= sizeTable[i]) {
                return i + j;
            }
        }
    }

    public int[] findColumnWidth(int[][] grid) {
        int n = grid[0].length;
        int[] res = new int[n];
        int[] negative = new int[n];
        for (int[] ints : grid) {
            for (int i = 0; i < n; i++) {
                if (ints[i] < negative[i]) {
                    negative[i] = ints[i];
                } else if (ints[i] > res[i]) {
                    res[i] = ints[i];
                }
            }
        }
        for (int i = 0; i < n; i++) {
            res[i] = Math.max(stringSize(res[i]), stringSize(negative[i]));
        }
        return res;
    }

}

性能

2007.从双倍数组中还原原数组

目标

一个整数数组 original 可以转变成一个 双倍 数组 changed ,转变方式为将 original 中每个元素 值乘以 2 加入数组中,然后将所有元素 随机打乱 。

给你一个数组 changed ,如果 change 是 双倍 数组,那么请你返回 original数组,否则请返回空数组。original 的元素可以以 任意 顺序返回。

示例 1:

输入:changed = [1,3,4,2,6,8]
输出:[1,3,4]
解释:一个可能的 original 数组为 [1,3,4] :
- 将 1 乘以 2 ,得到 1 * 2 = 2 。
- 将 3 乘以 2 ,得到 3 * 2 = 6 。
- 将 4 乘以 2 ,得到 4 * 2 = 8 。
其他可能的原数组方案为 [4,3,1] 或者 [3,1,4] 。

示例 2:

输入:changed = [6,3,0,1]
输出:[]
解释:changed 不是一个双倍数组。

示例 3:

输入:changed = [1]
输出:[]
解释:changed 不是一个双倍数组。

说明:

  • 1 <= changed.length <= 10^5
  • 0 <= changed[i] <= 10^5

思路

所谓双倍数组指的是由原数组以及其每个元素乘以2之后的元素合并在一起的数组。现在想要从双倍数组还原为原数组,如果不是合法的双倍数组则返回空数组。

首先,如果元素个数为奇数肯定不是双倍数组。注意到数组中的元素如果是奇数那么一定属于原数组。由于返回数组的顺序任意,那么先排序会更好处理。

接着就想到将奇数与偶数分开,然后看奇数*2是否有相应的偶数对应,或者可以将偶数元素/2看是否有奇数对应(不过这样就得处理0的情况,因为0只能与它自己匹配)。匹配完成后可能还剩下原数组中的偶数元素与其对应的双倍元素。

该如何处理呢?看了具体的例子很容易有一些想当然的想法,比如剩余[2,2,4,4]很容易将其平分为两部分,然后同时比较这两部分相应的位置是否满足二倍关系。这种假设是没有根据的,也是不对的,比如剩余[2、2、4、4、4、6、8、12]也是合法的。那我们该怎么比较呢?

这时突然有一个想法出现在大脑中,可以先将当前元素存到队列中,如果后面的元素不是其二倍就添加到队列中,如果是则将队列的第一个元素取出,这样遍历完之后看队列中是否还有数据即可。我们之所以可以这么做是因为前面排过序了,队首元素的二倍元素一定会最先出现。如果不排序的话,比如说[2,1],2先加入队列,后加入的1就无法匹配了。再比如[4,8,2,16],4与8匹配了,剩下的就匹配不了了。

有了这个想法之后,前面区分奇数、偶数,对0做特殊处理就都没有必要了。

网友还介绍了一种消消乐的方法,可以不排序。这个需要先统计各元素出现的次数,然后如果x % 2 == 0 && cnt.containsKey(x / 2)则跳过,即如果 x/2 在 cnt 中,则跳过,直到找到开始的那个x,然后一次性处理之前被跳过的2x、4x、6x...。这里其实也利用了顺序,只不过没有排序而是先找到不能再分的那个初始节点再向后倍增。

还有的使用大数组保存了 0~max 元素出现次数的数组cnt,然后遍历cnt,如果cnt[i]>02*i>max || cnt[2i]==0 直接返回空数组,否则cnt[2i]--这个方法也不用排序,是因为统计个数时变相地将数组元素映射为下标,遍历cnt数组是从小到大有序的。

代码

/**
 * @date 2024-04-18 8:48
 */
public class FindOriginalArray2007 {

    public int[] findOriginalArray(int[] changed) {
        int n = changed.length;
        if (n % 2 == 1) {
            return new int[0];
        }
        Arrays.sort(changed);
        int originLength = n / 2;
        int[] res = new int[originLength];
        Deque<Integer> collect = new ArrayDeque<>();
        int i = 0;
        for (int j = 0; j < changed.length; j++) {
            if (collect.size() == 0 || changed[j] % 2 == 1 || !collect.peek().equals(changed[j] / 2)) {
                collect.add(changed[j]);
            } else {
                res[i++] = collect.poll();
            }
        }
        if (collect.size() > 0) {
            return new int[0];
        }
        return res;
    }

}

性能

238.除自身以外数组的乘积

目标

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。

请 不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

说明:

  • 2 <= nums.length <= 10^5
  • -30 <= nums[i] <= 30
  • 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组 不被视为 额外空间。)

思路

最简单的想法是先计算所有元素的乘积,然后挨个除,但是题目要求不能用除法,略过。

后面又要求不要创建额外的空间,即最好只创建一个用于返回结果的数组。

考虑先保存数组元素的右/左侧的乘积,然后二次遍历计算左/右侧乘积,然后与之前保存的值相乘即可。

网友还有一种一次遍历的写法,初始化结果数组为1,同时从前计算左边乘积,从后计算右边乘积,但是每次循环执行了4次乘法,效率并不高。

代码

/**
 * @date 2024-04-07 11:35
 */
public class ProductExceptSelf238 {

    public int[] productExceptSelf(int[] nums) {
        int n = nums.length;
        int[] right = new int[n];
        right[n- 1] = 1;
        for (int i = n - 2; i >= 0; i--) {
            right[i] = nums[i + 1] * right[i + 1];
        }
        int left = 1;
        for (int i = 1; i < n; i++) {
            left *= nums[i - 1];
            right[i] *= left;
        }
        return right;
    }

    /**  一次遍历的版本 */
    public int[] productExceptSelf_v1(int[] nums) {
        int[] res = new int[nums.length];
        Arrays.fill(res, 1);
        int j = nums.length - 2;
        int left = 1, right = 1;
        for (int i = 1; i < nums.length; i++) {
            left *= nums[i - 1];
            right *= nums[j + 1];
            res[i] = left * res[i];
            res[j] = right * res[j];
            j--;
        }
        return res;
    }
}

性能

1702.修改后的最大二进制字符串

目标

给你一个二进制字符串 binary ,它仅有 0 或者 1 组成。你可以使用下面的操作任意次对它进行修改:

  • 操作 1 :如果二进制串包含子字符串 "00" ,你可以用 "10" 将其替换。

    比方说, "00010" -> "10010"

  • 操作 2 :如果二进制串包含子字符串 "10" ,你可以用 "01" 将其替换。

    比方说, "00010" -> "00001"

请你返回执行上述操作任意次以后能得到的 最大二进制字符串 。如果二进制字符串 x 对应的十进制数字大于二进制字符串 y 对应的十进制数字,那么我们称二进制字符串 x 大于二进制字符串 y 。

示例 1:

输入:binary = "000110"
输出:"111011"
解释:一个可行的转换为:
"000110" -> "000101" 
"000101" -> "100101" 
"100101" -> "110101" 
"110101" -> "110011" 
"110011" -> "111011"

示例 2:

输入:binary = "01"
输出:"01"
解释:"01" 没办法进行任何转换。

说明:

  • 1 <= binary.length <= 10^5
  • binary 仅包含 '0' 和 '1'

思路

看到这道题我最先想到的是使用字符串替换,先把00的都替换为10,直到不能替换为止。然后再替换10为01,直到不能替换为止。然后再从头替换,相当于是一个while里面套两个while。

通过对具体例子的观察可以发现将10替换为01不是无条件的,我甚至还写了比较字符串大小的方法,如果字符串变小了就不变了。但其实是不行的,因为中间过程确实存在变小的情况。

最后经过观察分析发现必须要前面有0才可以替换,因为这样可以将高位的0置为1。以01110为例,最后能够转换为10111。

于是就想通过replace方法替换捕获组来实现,例如匹配 0(1*)0,替换为 10(匹配到的1),试了一下发现replacement不支持。Pattern 类也是无法使用的。

基于上面的分析,我们可以通过算法模拟出替换过程,这里面需要用到双指针 starti

  1. 如果 starti 相同且都指向1,那么直接跳过
  2. 如果 starti 相差1,且 i 指向0,即00的情况,那么将 start 指向置1,start++
  3. 否则,如果 starti 相差大于1,且 i 指向0,即0(1+)0的情况,那么需要将start 指向置1,start 后面的置0,i 指向的置1 即可

需要注意的是,如果 starti 不同,那么 start 指向的一定是0。其实步骤2与3可以合并,只需先将 i 置1,然后再将 start 后面的置0即可。

看了官网的题解,还提供了一种直接构建的算法。

如果字符串中有多个0,总可以将它们通过10->01将其前移至第一个0的位置,然后通过00->10,使高位的0变为1。最终的结果中至多包含1个0。

因此,直接构建的方法是:从第一个0开始,后面的0全置为1,然后将第一个0后移 0的个数减1 个位置。

代码

/**
 * @date 2024-04-10 0:53
 */
public class MaximumBinaryString1702 {

    /** 直接构造 */
    public String maximumBinaryString_v2(String binary) {
        char[] b = binary.toCharArray();
        int firstZero = binary.indexOf('0');
        if (firstZero == -1) {
            return binary;
        }
        int cnt = 0;
        for (int i = firstZero; i < b.length; i++) {
            cnt += '1' - b[i];
            b[i] = '1';
        }
        b[firstZero + cnt - 1] = '0';
        return new String(b);
    }

    public String maximumBinaryString_v1(String binary) {
        char[] b = binary.toCharArray();
        int start = 0;
        for (int i = 0; i < b.length; i++) {
            if (start == i && '1' == b[i]) {
                start++;
            } else if (start <= i - 1 && '0' == b[i]) {
                b[start++] = '1';
                b[i] = '1';
                b[start] = '0';
            }
        }
        return new String(b);
    }

    public String maximumBinaryString(String binary) {
        char[] b = binary.toCharArray();
        int start = 0;
        for (int i = 0; i < b.length; i++) {
            if (start == i && '1' == b[i]) {
                start++;
            } else if (start == i - 1 && '0' == b[i]) {
                b[start++] = '1';
            } else if (start < i - 1 && '0' == b[i]) {
                b[start++] = '1';
                b[start] = '0';
                b[i] = '1';
            }
        }
        return new String(b);
    }

}

性能

2529.正整数和负整数的最大计数

目标

给你一个按 非递减顺序 排列的数组 nums ,返回正整数数目和负整数数目中的最大值。

  • 换句话讲,如果 nums 中正整数的数目是 pos ,而负整数的数目是 neg ,返回 pos 和 neg二者中的最大值。

注意:0 既不是正整数也不是负整数。

示例 1:

输入:nums = [-2,-1,-1,1,2,3]
输出:3
解释:共有 3 个正整数和 3 个负整数。计数得到的最大值是 3 。

示例 2:

输入:nums = [-3,-2,-1,0,0,1,2]
输出:3
解释:共有 2 个正整数和 3 个负整数。计数得到的最大值是 3 。

示例 3:

输入:nums = [5,20,66,1314]
输出:4
解释:共有 4 个正整数和 0 个负整数。计数得到的最大值是 4 。

说明:

  • 1 <= nums.length <= 2000
  • -2000 <= nums[i] <= 2000
  • nums 按 非递减顺序 排列。

进阶:你可以设计并实现时间复杂度为 O(log(n)) 的算法解决此问题吗?

思路

这个题简单做法就是循环计数,O(n)的时间复杂度。O(log(n))需要使用二分查找。Arrays.binarySearch() 是处理不了非严格递增的情况的,如果查找的key有多个,无法保证返回的是哪一个,通常就是中间的那一个。

这里的难点是弄清楚当有多个相同值的时候如何找到第一个。具体来说就是 low 与 high 的更新以及结束条件,自己可以用一个具体的例子来模拟查找的过程。

  • 结束条件是 low == high
  • 如果寻找下界,那么 nums[middle] >= key 更新 high = middlenums[middle] < key 更新 low = middle + 1。返回第一个大于等于key的index。
  • 如果寻找上界,那么 nums[middle] > key 更新 high = middle - 1nums[middle] <= key 更新 low = middle 寻找上界的话只需将等号去掉即可,得到的是第一个小于等于key的index+1。

为什么要 +1 或者 -1? 因为middle指的位置不等于key,不是我们要找的值,不应该再出现在下一次的查找范围内,这是能说的通的。其实最核心的目的是保证最终low、high指向同一个位置,防止出现low与high相差1,但是middle指向的位置也无法触发更新的情况。以[-3,0,0,3,4]为例,我们要找0的下界,如果low的更新不 +1,那么最终就是 low,middle 指向 -3,high 指向第一个0,这不是我们想要的。

代码


/**
 * @date 2024-04-09 1:33
 */
public class MaximumCount2529 {

    public int maximumCount(int[] nums) {
        int pos = 0;
        int neg = 0;
        for (int i = 0; i < nums.length; i++) {
            if (nums[i] < 0) {
                neg++;
            } else if (nums[i] > 0) {
                pos = nums.length - i;
                break;
            }
        }
        return Math.max(pos, neg);
    }

    /**
     * 二分查找
     */
    public int maximumCount_v2(int[] nums) {
        int neg = bs(nums, 0);
        int pos = bs(nums, 1);
        return Math.max(neg, nums.length - pos);
    }

    public int bs(int[] nums, int key) {
        int low = 0, high = nums.length;
        while (low != high) {
            int middle = (low + high) >> 1;
            if (nums[middle] >= key) {
                high = middle;
            } else {
                low = middle + 1;
            }
        }
        return low;
    }
}

性能

1.两数之和

目标

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]

说明:

  • 2 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9
  • -10^9 <= target <= 10^9
  • 只会存在一个有效答案

进阶:你可以想出一个时间复杂度小于 O(n2) 的算法吗?

思路

除了每日一题还开了一个进度,今天找个简单的来做吧。这题是leetcode的abandon,应该所有人都会遇到。

这道题我首先想到的还是暴力解法。本来是很抗拒的,但是如果可以先排序,然后找到大于target的下标来缩小范围,是不是会好一些。

但是这样会改变原数组元素的下标,还是暴力解吧。

官网的解使用了Hash表,但是我首先就把使用hash表来存储排除了,也许是觉得就是查两个下标就要存10^9个数据会不会太浪费了。这样不好,感觉思维被限制了。

再给自己强调一下,如果需要降低查询的时间复杂度,首先要考虑hash表!hash表结合了数组与链表的优点,理想情况下操作的时间复杂度为O(1),但是空间利用率不高,下标由值的hash函数来决定。

代码

随便贴一下官网的解吧。

class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> hashtable = new HashMap<Integer, Integer>();
        for (int i = 0; i < nums.length; ++i) {
            if (hashtable.containsKey(target - nums[i])) {
                return new int[]{hashtable.get(target - nums[i]), i};
            }
            hashtable.put(nums[i], i);
        }
        return new int[0];
    }
}

性能

时间复杂度O(n)最多一次遍历,空间复杂度O(n)用于hash表开销。

2908.元素和最小的山形三元组I

目标

给你一个下标从 0 开始的整数数组 nums 。

如果下标三元组 (i, j, k) 满足下述全部条件,则认为它是一个 山形三元组 :

  • i < j < k
  • nums[i] < nums[j] 且 nums[k] < nums[j]

请你找出 nums 中 元素和最小 的山形三元组,并返回其 元素和 。如果不存在满足条件的三元组,返回 -1 。

示例 1:

输入:nums = [8,6,1,5,3]
输出:9
解释:三元组 (2, 3, 4) 是一个元素和等于 9 的山形三元组,因为: 
- 2 < 3 < 4
- nums[2] < nums[3] 且 nums[4] < nums[3]
这个三元组的元素和等于 nums[2] + nums[3] + nums[4] = 9 。可以证明不存在元素和小于 9 的山形三元组。

示例 2:

输入:nums = [5,4,8,7,10,2]
输出:13
解释:三元组 (1, 3, 5) 是一个元素和等于 13 的山形三元组,因为: 
- 1 < 3 < 5 
- nums[1] < nums[3] 且 nums[5] < nums[3]
这个三元组的元素和等于 nums[1] + nums[3] + nums[5] = 13 。可以证明不存在元素和小于 13 的山形三元组。

示例 3:

输入:nums = [6,5,4,3,4,5]
输出:-1
解释:可以证明 nums 中不存在山形三元组。

提示:

  • 3 <= nums.length <= 50
  • 1 <= nums[i] <= 50

思路

它标的是一道简单题,但是在我思考的过程中甚至产生了自我怀疑。以至于后面有些抓狂,直接暴力求解,不考虑性能,不考虑优雅,什么都不顾,只要能做出来。好以此来证明自己不是那么傻。

这道题让我们求数组中满足某些条件的三元组之中和最小的那一个,满足的条件就是 小 大 小,可以不连续。

暴力解法上来直接就排除了,什么动态规划直接pass。简单题需要这些吗?然后我就被上了一课,不用这些真想不出来。方法没有高低之分。

代码

/**
 * @date 2024-03-29 0:52
 */
public class MinimumSum2908 {

    public int minimumSum(int[] nums) {
        int[] dp = new int[nums.length];
        dp[0] = Integer.MAX_VALUE;
        dp[nums.length - 1] = Integer.MAX_VALUE;
        for (int i = 1; i < nums.length; i++) {
            int tmp = i;
            int left = Integer.MAX_VALUE;
            while (i >= 1) {
                if (nums[tmp] > nums[i - 1]) {
                    left = Math.min(left, nums[i - 1]);
                }
                i--;
            }
            if (left == Integer.MAX_VALUE) {
                dp[tmp] = Integer.MAX_VALUE;
                i = tmp;
                continue;
            }
            int right = Integer.MAX_VALUE;
            i = tmp;
            while (i < nums.length - 1) {
                if (nums[tmp] > nums[i + 1]) {
                    right = Math.min(right, nums[i + 1]);
                }
                i++;
            }
            if (right != Integer.MAX_VALUE) {
                dp[tmp] = left + nums[tmp] + right;
            } else {
                dp[tmp] = Integer.MAX_VALUE;
            }
            i = tmp;
        }
        Arrays.sort(dp);
        return dp[0] == Integer.MAX_VALUE ? -1 : dp[0];
    }
}

性能

518.零钱兑换II

目标

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。

题目数据保证结果符合 32 位带符号整数。

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。

示例 3:

输入:amount = 10, coins = [10] 
输出:1

说明:

  • 1 <= coins.length <= 300
  • 1 <= coins[i] <= 5000
  • coins 中的所有值 互不相同
  • 0 <= amount <= 5000

思路

// todo

代码

/**
 * @date 2024-03-25 8:31
 */
public class CoinChange {

    public int change(int amount, int[] coins) {
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for (int coin : coins) {
            for (int j = coin; j <= amount; j++) {
                dp[j] += dp[j - coin];
            }
        }
        return dp[amount];
    }

    public static void main(String[] args) {
        CoinChange main = new CoinChange();
//        int amount = 5;
        int amount = 500;
        int[] coins = new int[]{1, 2, 5};
//        System.out.println(main.change(amount, coins));
//        System.out.println(main.change(amount, coins));
        System.out.println(main.change(amount, coins));
    }
}

性能

// todo

322.零钱兑换

目标

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

说明:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 2^31 - 1
  • 0 <= amount <= 10^4

思路

// todo

思考的方向错了,试图用贪心算法枚举可能的组合。做法是优先选面值最大的,取得余数,再计算下一个面值的余数,直到余数为0。但是这样得到的不一定是最优解。尝试将最大面值的个数减一,然后余数加上最大面值,重新计算。但是还是一样的,如果要调整的话,所有面值的个数都要调整,不能只调整最大的,后面的还用贪心,这样问题就不可解了。

代码

/**
 * @date 2024-03-24 0:04
 */
public class CoinChange {

    public int coinChange(int[] coins, int amount) {
        int max = amount + 1;
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, max);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {
            for (int j = 0; j < coins.length; j++) {
                if (coins[j] <= i) {
                    dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
                }
            }
        }
        return dp[amount] > amount ? -1 : dp[amount];
    }

    public static void main(String[] args) {
        CoinChange main = new CoinChange();
//        int[] coins = new int[]{3, 7};
        int[] coins = new int[]{186, 419, 83, 408};
//        System.out.println(main.coinChange(coins, 9));
        System.out.println(main.coinChange(coins, 6249));
    }
}

性能

// todo

1793.好子数组的最大分数

目标

给你一个整数数组 nums (下标从 0 开始)和一个整数 k 。

一个子数组 (i, j) 的 分数 定义为 min(nums[i], nums[i+1], ..., nums[j]) * (j - i + 1) 。一个 好 子数组的两个端点下标需要满足 i <= k <= j 。

请你返回 好 子数组的最大可能 分数 。

示例 1:

输入:nums = [1,4,3,7,4,5], k = 3
输出:15
解释:最优子数组的左右端点下标是 (1, 5) ,分数为 min(4,3,7,4,5) * (5-1+1) = 3 * 5 = 15 。

示例 2:

输入:nums = [5,5,4,5,4,1,1,1], k = 0
输出:20
解释:最优子数组的左右端点下标是 (0, 4) ,分数为 min(5,5,4,5,4) * (4-0+1) = 4 * 5 = 20 。

提示:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 2 * 10^4
  • 0 <= k < nums.length

思路

题目中定义的好子数组必须要包含下标k,且其元素最小值乘以它的长度应最大。相同长度的子数组其最小值通常不同,应取最小值中最大的,这样才能在窗口固定的情况下求得最大分数。

刚开始我把这个问题作为一个动态规划问题来求解:有一个窗口,在下标k的位置有一个固定轴,窗口可以左右滑动,拉伸,但窗口边缘不能越过k。然后求解窗口大小固定时,滑动窗口内最小元素取最大时的状态。接着扩展窗口,新窗口的取值依赖于上一窗口,只需在上一窗口的基础上左右各扩展一个元素进行比较即可。

但是我马上就遇到了问题,因为k的位置是不确定的,窗口左右滑动总会有一边先到达边界,然后怎么处理?上一个窗口取得较大的最小值可能是在k左侧,当窗口到达左侧边界后就无法再移动了,这样势必会有一部分覆盖到k右侧,我们无法再用一侧的最优解来掩盖另一侧了。而右边新加入窗口的元素与上一个状态选择的最小值无法确定新的最小值。因为窗口记录的是左右两侧的最优解,单独某一侧的状态并没有被记录。比如 nums=[10,9,8,7,6,5,3,2,2,4,9,4,11,3,4],k=5,当窗口大小为6时,左侧的最小值是5,右侧最小值是2(但是我们并没有记录),我们记录的是较大的5。当窗口大小为7时,左侧窗口最小值为3(必须跨过k了),右侧新加入窗口的值是4,如果与上一个状态比较,我们可能会选择4,但是右侧最小值是2,我们应该选3。

于是我想可能需要分别记录左右两侧的状态。我们为什么要记录状态?上面记录状态是为了与新进入窗口的元素比较来选择最优解,我们现在记录左右两侧的什么呢?

随着思考的深入,我觉得应该放弃所谓滑动窗口这个概念了,不应该在左右两侧同时求解。

思考这个问题,窗口增大之后,其中元素的最小值会怎么变?反正最小值一定不会变大。于是只要新加入的元素比窗口内已经选定的最小值大就可以一直扩张,因为最小值没有变化,窗口大小越大分数就越大。当遇到比当前窗口内最小值小的元素时就需要比较窗口另一侧的值,哪边的更大就从哪边扩张。如此反复即可。

代码

/**
 * @date 2024-03-19 0:16
 */
public class MaximumScore {

    public int maximumScore_v2(int[] nums, int k) {
        if (nums.length == 1) {
            return nums[0];
        }
        int res = 0;
        int l = k - 1, r = k + 1;
        int lmin = nums[k], rmin = nums[k];
        while (l >= 0 || r < nums.length) {
            if (l >= 0) {
                lmin = Math.min(lmin, nums[l]);
            }
            if (r < nums.length) {
                rmin = Math.min(rmin, nums[r]);
            }
            if ((lmin >= rmin && l >= 0) || r >= nums.length) {
                l--;
                while (l >= 0 && lmin <= nums[l]) {
                    l--;
                }
                // r-l是窗口大小(不包括r),由于l多减了1,所以这里要减去
                res = Math.max(res, lmin * (r - l - 1));
            } else {
                r++;
                while (r < nums.length && rmin <= nums[r]) {
                    r++;
                }
                // r-l是窗口大小(不包括l)由于r多加了1,所以这里要减去
                res = Math.max(res, rmin * (r - l - 1));
            }
        }
        return res;
    }
}

性能