目标
给定一个整数数组 nums,处理以下类型的多个查询:
计算索引 left 和 right (包含 left 和 right)之间的 nums 元素的 和 ,其中 left <= right
实现 NumArray 类:
- NumArray(int[] nums) 使用数组 nums 初始化对象
- int sumRange(int i, int j) 返回数组 nums 中索引 left 和 right 之间的元素的 总和 ,包含 left 和 right 两点(也就是 nums[left] + nums[left + 1] + ... + nums[right] )
示例 1:
输入:
["NumArray", "sumRange", "sumRange", "sumRange"]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]
解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1))
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))
说明:
- 1 <= nums.length <= 10^4
- -10^5 <= nums[i] <= 10^5
- 0 <= i <= j < nums.length
- 最多调用 104 次 sumRange 方法
思路
这个题看到之后没多想,提交之后发现和别人的性能差了10倍。这里的技巧就是提前将和计算的结果保存起来,用的时候直接用 prefix[right+1] - prefix[left]
即可。因为数组不可变所以这样是可行的。
这里没有使用 prefix[right] - prefix[left-1]
因为可以省去left为0的判断,不过多占用了4字节。其实没有必要纠结这些,真要计较的话,当left为0时还少了两次减法呢,并且cpu指令执行也有分支预测,无需关注这些细节。
代码
/**
* @date 2024-03-18 8:36
*/
public class NumArray {
private final int[] prefixSum;
public NumArray(int[] nums) {
prefixSum = new int[nums.length + 1];
for (int i = 0; i < nums.length; i++) {
prefixSum[i + 1] = prefixSum[i] + nums[i];
}
}
public int sumRange(int left, int right) {
return prefixSum[right + 1] - prefixSum[left];
}
public static void main(String[] args) {
NumArray main = new NumArray(new int[]{-2, 0, 3, -5, 2, -1});
System.out.println(main.sumRange(0, 2));
System.out.println(main.sumRange(2, 5));
System.out.println(main.sumRange(0, 5));
}
}