2353.设计食物评分系统

目标

设计一个支持下述操作的食物评分系统:

  • 修改 系统中列出的某种食物的评分。
  • 返回系统中某一类烹饪方式下评分最高的食物。

实现 FoodRatings 类:

  • FoodRatings(String[] foods, String[] cuisines, int[] ratings) 初始化系统。食物由 foods、cuisines 和 ratings 描述,长度均为 n 。
  • foods[i] 是第 i 种食物的名字。
  • cuisines[i] 是第 i 种食物的烹饪方式。
  • ratings[i] 是第 i 种食物的最初评分。
  • void changeRating(String food, int newRating) 修改名字为 food 的食物的评分。
  • String highestRated(String cuisine) 返回指定烹饪方式 cuisine 下评分最高的食物的名字。如果存在并列,返回 字典序较小 的名字。

注意,字符串 x 的字典序比字符串 y 更小的前提是:x 在字典中出现的位置在 y 之前,也就是说,要么 x 是 y 的前缀,或者在满足 x[i] != y[i] 的第一个位置 i 处,x[i] 在字母表中出现的位置在 y[i] 之前。

示例:

输入
["FoodRatings", "highestRated", "highestRated", "changeRating", "highestRated", "changeRating", "highestRated"]
[[["kimchi", "miso", "sushi", "moussaka", "ramen", "bulgogi"], ["korean", "japanese", "japanese", "greek", "japanese", "korean"], [9, 12, 8, 15, 14, 7]], ["korean"], ["japanese"], ["sushi", 16], ["japanese"], ["ramen", 16], ["japanese"]]
输出
[null, "kimchi", "ramen", null, "sushi", null, "ramen"]

解释
FoodRatings foodRatings = new FoodRatings(["kimchi", "miso", "sushi", "moussaka", "ramen", "bulgogi"], ["korean", "japanese", "japanese", "greek", "japanese", "korean"], [9, 12, 8, 15, 14, 7]);
foodRatings.highestRated("korean"); // 返回 "kimchi"
                                    // "kimchi" 是分数最高的韩式料理,评分为 9 。
foodRatings.highestRated("japanese"); // 返回 "ramen"
                                      // "ramen" 是分数最高的日式料理,评分为 14 。
foodRatings.changeRating("sushi", 16); // "sushi" 现在评分变更为 16 。
foodRatings.highestRated("japanese"); // 返回 "sushi"
                                      // "sushi" 是分数最高的日式料理,评分为 16 。
foodRatings.changeRating("ramen", 16); // "ramen" 现在评分变更为 16 。
foodRatings.highestRated("japanese"); // 返回 "ramen"
                                      // "sushi" 和 "ramen" 的评分都是 16 。
                                      // 但是,"ramen" 的字典序比 "sushi" 更小。

说明:

  • 1 <= n <= 2 * 10^4
  • n == foods.length == cuisines.length == ratings.length
  • 1 <= foods[i].length, cuisines[i].length <= 10
  • foods[i]、cuisines[i] 由小写英文字母组成
  • 1 <= ratings[i] <= 10^8
  • foods 中的所有字符串 互不相同
  • 在对 changeRating 的所有调用中,food 是系统中食物的名字。
  • 在对 highestRated 的所有调用中,cuisine 是系统中 至少一种 食物的烹饪方式。
  • 最多调用 changeRating 和 highestRated 总计 2 * 10^4 次

思路

设计一个食物评分系统,返回指定类别评分最高的食物,支持修改食物的评分。

要知道类别中评分最高的食物,优先队列/TreeSet 的元素应为 (rating, food) 键值对,根据评分从大到小排序,如果评分相同根据食物的字典序排列。

修改食物评分后需要更新对应类别的评分排名,因此需要维护 (food, cuisine) 的映射关系。如果使用懒加载,还需要记录食物最新的评分,维护 (food, rating)。如果使用红黑树,需要根据更新前的评分删除树中数据,同样需要维护 (food, rating)

有人使用优先队列超时是因为删除元素的复杂度是 O(n)。考虑使用懒删除或者使用 有序集合 TreeSet。有序集合查找最大/最小节点的复杂度是 O(logn),最大/小节点是最右/左叶子节点,查找复杂度是树的高度。

代码


/**
 * @date 2025-02-28 0:10
 */
public class FoodRatings {

    Map<String, PriorityQueue<String[]>> map;
    Map<String, String> foodMap;
    Map<String, Integer> ratingMap;

    public FoodRatings(String[] foods, String[] cuisines, int[] ratings) {
        int n = foods.length;
        map = new HashMap<>(n);
        foodMap = new HashMap<>(n);
        ratingMap = new HashMap<>(n);
        for (int i = 0; i < n; i++) {
            foodMap.put(foods[i], cuisines[i]);
            ratingMap.put(foods[i], ratings[i]);
            map.putIfAbsent(cuisines[i], new PriorityQueue<>((a, b) -> {
                int compare = Integer.parseInt(b[0]) - Integer.parseInt(a[0]);
                if (compare != 0) {
                    return compare;
                }
                return a[1].compareTo(b[1]);
            }));
            map.get(cuisines[i]).offer(new String[]{String.valueOf(ratings[i]), foods[i]});
        }
    }

    public void changeRating(String food, int newRating) {
        ratingMap.put(food, newRating);
        map.get(foodMap.get(food)).offer(new String[]{String.valueOf(newRating), food});
    }

    public String highestRated(String cuisine) {
        PriorityQueue<String[]> q = map.get(cuisine);
        while (Integer.parseInt(q.peek()[0]) != ratingMap.get(q.peek()[1])) {
            q.poll();
        }
        return q.peek()[1];
    }
}

性能

1472.设计浏览器历史记录

目标

你有一个只支持单个标签页的 浏览器 ,最开始你浏览的网页是 homepage ,你可以访问其他的网站 url ,也可以在浏览历史中后退 steps 步或前进 steps 步。

请你实现 BrowserHistory 类:

  • BrowserHistory(string homepage) ,用 homepage 初始化浏览器类。
  • void visit(string url) 从当前页跳转访问 url 对应的页面 。执行此操作会把浏览历史前进的记录全部删除。
  • string back(int steps) 在浏览历史中后退 steps 步。如果你只能在浏览历史中后退至多 x 步且 steps > x ,那么你只后退 x 步。请返回后退 至多 steps 步以后的 url 。
  • string forward(int steps) 在浏览历史中前进 steps 步。如果你只能在浏览历史中前进至多 x 步且 steps > x ,那么你只前进 x 步。请返回前进 至多 steps步以后的 url 。

示例:

输入:
["BrowserHistory","visit","visit","visit","back","back","forward","visit","forward","back","back"]
[["leetcode.com"],["google.com"],["facebook.com"],["youtube.com"],[1],[1],[1],["linkedin.com"],[2],[2],[7]]
输出:
[null,null,null,null,"facebook.com","google.com","facebook.com",null,"linkedin.com","google.com","leetcode.com"]

解释:
BrowserHistory browserHistory = new BrowserHistory("leetcode.com");
browserHistory.visit("google.com");       // 你原本在浏览 "leetcode.com" 。访问 "google.com"
browserHistory.visit("facebook.com");     // 你原本在浏览 "google.com" 。访问 "facebook.com"
browserHistory.visit("youtube.com");      // 你原本在浏览 "facebook.com" 。访问 "youtube.com"
browserHistory.back(1);                   // 你原本在浏览 "youtube.com" ,后退到 "facebook.com" 并返回 "facebook.com"
browserHistory.back(1);                   // 你原本在浏览 "facebook.com" ,后退到 "google.com" 并返回 "google.com"
browserHistory.forward(1);                // 你原本在浏览 "google.com" ,前进到 "facebook.com" 并返回 "facebook.com"
browserHistory.visit("linkedin.com");     // 你原本在浏览 "facebook.com" 。 访问 "linkedin.com"
browserHistory.forward(2);                // 你原本在浏览 "linkedin.com" ,你无法前进任何步数。
browserHistory.back(2);                   // 你原本在浏览 "linkedin.com" ,后退两步依次先到 "facebook.com" ,然后到 "google.com" ,并返回 "google.com"
browserHistory.back(7);                   // 你原本在浏览 "google.com", 你只能后退一步到 "leetcode.com" ,并返回 "leetcode.com"

说明:

  • 1 <= homepage.length <= 20
  • 1 <= url.length <= 20
  • 1 <= steps <= 100
  • homepage 和 url 都只包含 '.' 或者小写英文字母。
  • 最多调用 5000 次 visit, back 和 forward 函数。

思路

设计一个浏览器历史记录管理器,记录在同一个标签页的浏览历史,允许前进/后退 steps 步(不能超出浏览记录的范围)。如果打开新页面,当前页面记录会覆盖前进的记录。

使用栈模拟,记录 curtail 两个指针,前进取 Math.min(tail, cur + steps),后退取 Math.max(0, cur - steps),访问新页面 ++cur; tail = cur;

代码


/**
 * @date 2025-02-26 8:48
 */
class BrowserHistory {

    String[] history = new String[5000];
    int tail = 0;
    int cur = 0;

    public BrowserHistory(String homepage) {
        history[0] = homepage;
    }

    public void visit(String url) {
        history[++cur] = url;
        tail = cur;
    }

    public String back(int steps) {
        cur = Math.max(0, cur - steps);
        return history[cur];
    }

    public String forward(int steps) {
        cur = Math.min(tail, cur + steps);
        return history[cur];
    }
}

性能

2502.设计内存分配器

目标

给你一个整数 n ,表示下标从 0 开始的内存数组的大小。所有内存单元开始都是空闲的。

请你设计一个具备以下功能的内存分配器:

  1. 分配 一块大小为 size 的连续空闲内存单元并赋 id mID 。
  2. 释放 给定 id mID 对应的所有内存单元。

注意:

  • 多个块可以被分配到同一个 mID 。
  • 你必须释放 mID 对应的所有内存单元,即便这些内存单元被分配在不同的块中。

实现 Allocator 类:

  • Allocator(int n) 使用一个大小为 n 的内存数组初始化 Allocator 对象。
  • int allocate(int size, int mID) 找出大小为 size 个连续空闲内存单元且位于 最左侧 的块,分配并赋 id mID 。返回块的第一个下标。如果不存在这样的块,返回 -1 。
  • int freeMemory(int mID) 释放 id mID 对应的所有内存单元。返回释放的内存单元数目。

示例:

输入
["Allocator", "allocate", "allocate", "allocate", "freeMemory", "allocate", "allocate", "allocate", "freeMemory", "allocate", "freeMemory"]
[[10], [1, 1], [1, 2], [1, 3], [2], [3, 4], [1, 1], [1, 1], [1], [10, 2], [7]]
输出
[null, 0, 1, 2, 1, 3, 1, 6, 3, -1, 0]

解释
Allocator loc = new Allocator(10); // 初始化一个大小为 10 的内存数组,所有内存单元都是空闲的。
loc.allocate(1, 1); // 最左侧的块的第一个下标是 0 。内存数组变为 [1, , , , , , , , , ]。返回 0 。
loc.allocate(1, 2); // 最左侧的块的第一个下标是 1 。内存数组变为 [1,2, , , , , , , , ]。返回 1 。
loc.allocate(1, 3); // 最左侧的块的第一个下标是 2 。内存数组变为 [1,2,3, , , , , , , ]。返回 2 。
loc.freeMemory(2); // 释放 mID 为 2 的所有内存单元。内存数组变为 [1, ,3, , , , , , , ] 。返回 1 ,因为只有 1 个 mID 为 2 的内存单元。
loc.allocate(3, 4); // 最左侧的块的第一个下标是 3 。内存数组变为 [1, ,3,4,4,4, , , , ]。返回 3 。
loc.allocate(1, 1); // 最左侧的块的第一个下标是 1 。内存数组变为 [1,1,3,4,4,4, , , , ]。返回 1 。
loc.allocate(1, 1); // 最左侧的块的第一个下标是 6 。内存数组变为 [1,1,3,4,4,4,1, , , ]。返回 6 。
loc.freeMemory(1); // 释放 mID 为 1 的所有内存单元。内存数组变为 [ , ,3,4,4,4, , , , ] 。返回 3 ,因为有 3 个 mID 为 1 的内存单元。
loc.allocate(10, 2); // 无法找出长度为 10 个连续空闲内存单元的空闲块,所有返回 -1 。
loc.freeMemory(7); // 释放 mID 为 7 的所有内存单元。内存数组保持原状,因为不存在 mID 为 7 的内存单元。返回 0 。

说明:

  • 1 <= n, size, mID <= 1000
  • 最多调用 allocate 和 free 方法 1000 次

提示:

  • Can you simulate the process?
  • Use brute force to find the leftmost free block and free each occupied memory unit

思路

设计一个内存分配器来管理大小为 n 的内存数组,要求实现初始化、分配与释放方法。内存分配方法返回大小为 size 的连续空闲内存的最左侧下标,并为这些内存分配标识 mID。内存释放则是释放 mID 的所有内存单元。

有网友使用链表来维护空间的分配状态,定义节点属性:起点、大小、是否已分配、下一个节点、mID。分配空间时挨个查找,释放空间类似。使用节点对象表示区间,空间合并起来比较方便。

提示说可以使用暴力解法,暴力解的时间复杂度为 O(qn)

// todo 线段树

代码


/**
 * @date 2025-02-25 10:03
 */
class Allocator {

    private int[] flag;
    private int n;

    public Allocator(int n) {
        this.flag = new int[n];
        this.n = n;
    }

    public int allocate(int size, int mID) {
        int cnt = 0;
        for (int i = 0; i < n; i++) {
            if (flag[i] != 0) {
                cnt = 0;
                continue;
            } else {
                cnt++;
            }
            if (cnt == size) {
                int start = i - size + 1;
                for (; i >= start; i--) {
                    flag[i] = mID;
                }
                return start;
            }
        }
        return -1;
    }

    public int freeMemory(int mID) {
        int cnt = 0;
        for (int i = 0; i < n; i++) {
            if (flag[i] == mID) {
                flag[i] = 0;
                cnt++;
            }
        }
        return cnt;
    }
}

性能

1656.设计有序流

目标

有 n 个 (id, value) 对,其中 id 是 1 到 n 之间的一个整数,value 是一个字符串。不存在 id 相同的两个 (id, value) 对。

设计一个流,以 任意 顺序获取 n 个 (id, value) 对,并在多次调用时 按 id 递增的顺序 返回一些值。

实现 OrderedStream 类:

  • OrderedStream(int n) 构造一个能接收 n 个值的流,并将当前指针 ptr 设为 1 。
  • String[] insert(int id, String value) 向流中存储新的 (id, value) 对。存储后:
    • 如果流存储有 id = ptr 的 (id, value) 对,则找出从 id = ptr 开始的 最长 id 连续递增序列 ,并 按顺序 返回与这些 id 关联的值的列表。然后,将 ptr 更新为最后那个 id + 1 。
    • 否则,返回一个空列表。

示例:

输入
["OrderedStream", "insert", "insert", "insert", "insert", "insert"]
[[5], [3, "ccccc"], [1, "aaaaa"], [2, "bbbbb"], [5, "eeeee"], [4, "ddddd"]]
输出
[null, [], ["aaaaa"], ["bbbbb", "ccccc"], [], ["ddddd", "eeeee"]]

解释
OrderedStream os= new OrderedStream(5);
os.insert(3, "ccccc"); // 插入 (3, "ccccc"),返回 []
os.insert(1, "aaaaa"); // 插入 (1, "aaaaa"),返回 ["aaaaa"]
os.insert(2, "bbbbb"); // 插入 (2, "bbbbb"),返回 ["bbbbb", "ccccc"]
os.insert(5, "eeeee"); // 插入 (5, "eeeee"),返回 []
os.insert(4, "ddddd"); // 插入 (4, "ddddd"),返回 ["ddddd", "eeeee"]

说明:

  • 1 <= n <= 1000
  • 1 <= id <= n
  • value.length == 5
  • value 仅由小写字母组成
  • 每次调用 insert 都会使用一个唯一的 id
  • 恰好调用 n 次 insert

思路

将编号为 id 的数据放入对应的位置上,pos 从 0 开始,如果 pos 位置上有数据,就输出自身及其后面非空的数据。

代码


/**
 * @date 2025-02-24 8:50
 */
public class OrderedStream1656 {

    static class OrderedStream {

        private final String[] buffer;

        private int pos = 1;

        public OrderedStream(int n) {
            buffer = new String[n + 1];
        }

        public List<String> insert(int idKey, String value) {
            List<String> res = new ArrayList<>();
            if (idKey != pos) {
                buffer[idKey] = value;
                return res;
            }
            buffer[pos] = value;
            while (pos < buffer.length && buffer[pos] != null) {
                res.add(buffer[pos++]);
            }
            return res;
        }
    }

}

性能

1206.设计跳表

目标

不使用任何库函数,设计一个 跳表 。

跳表 是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。

例如,一个跳表包含 [30, 40, 50, 60, 70, 90] ,然后增加 80、45 到跳表中,以下图的方式操作:

跳表中有很多层,每一层是一个短的链表。在第一层的作用下,增加、删除和搜索操作的时间复杂度不超过 O(n)。跳表的每一个操作的平均时间复杂度是 O(log(n)),空间复杂度是 O(n)。

了解更多 : https://oi-wiki.org/ds/skiplist/

在本题中,你的设计应该要包含这些函数:

  • bool search(int target) : 返回target是否存在于跳表中。
  • void add(int num): 插入一个元素到跳表。
  • bool erase(int num): 在跳表中删除一个值,如果 num 不存在,直接返回false. 如果存在多个 num ,删除其中任意一个即可。

注意,跳表中可能存在多个相同的值,你的代码需要处理这种情况。

示例 1:

输入
["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"]
[[], [1], [2], [3], [0], [4], [1], [0], [1], [1]]
输出
[null, null, null, null, false, null, true, false, true, false]

解释
Skiplist skiplist = new Skiplist();
skiplist.add(1);
skiplist.add(2);
skiplist.add(3);
skiplist.search(0);   // 返回 false
skiplist.add(4);
skiplist.search(1);   // 返回 true
skiplist.erase(0);    // 返回 false,0 不在跳表中
skiplist.erase(1);    // 返回 true
skiplist.search(1);   // 返回 false,1 已被擦除

说明:

  • 0 <= num, target <= 2 * 10^4
  • 调用search, add, erase操作次数不大于 5 * 10^4

思路

// todo

代码

性能

3242.设计相邻元素求和服务

目标

给你一个 n x n 的二维数组 grid,它包含范围 [0, n^2 - 1] 内的不重复元素。

实现 neighborSum 类:

  • neighborSum(int [][]grid) 初始化对象。
  • int adjacentSum(int value) 返回在 grid 中与 value 相邻的元素之和,相邻指的是与 value 在上、左、右或下的元素。
  • int diagonalSum(int value) 返回在 grid 中与 value 对角线相邻的元素之和,对角线相邻指的是与 value 在左上、右上、左下或右下的元素。

示例 1:

输入:
["neighborSum", "adjacentSum", "adjacentSum", "diagonalSum", "diagonalSum"]
[[[[0, 1, 2], [3, 4, 5], [6, 7, 8]]], [1], [4], [4], [8]]
输出: [null, 6, 16, 16, 4]
解释:
1 的相邻元素是 0、2 和 4。
4 的相邻元素是 1、3、5 和 7。
4 的对角线相邻元素是 0、2、6 和 8。
8 的对角线相邻元素是 4。

示例 2:

输入:
["neighborSum", "adjacentSum", "diagonalSum"]
[[[[1, 2, 0, 3], [4, 7, 15, 6], [8, 9, 10, 11], [12, 13, 14, 5]]], [15], [9]]
输出: [null, 23, 45]
解释:
15 的相邻元素是 0、10、7 和 6。
9 的对角线相邻元素是 4、12、14 和 15。

说明:

  • 3 <= n == grid.length == grid[0].length <= 10
  • 0 <= grid[i][j] <= n^2 - 1
  • 所有 grid[i][j] 值均不重复。
  • adjacentSum 和 diagonalSum 中的 value 均在范围 [0, n^2 - 1] 内。
  • 最多会调用 adjacentSum 和 diagonalSum 总共 2 * n^2 次。

思路

有一个 n x n 的二维矩阵,其元素值的范围是 0 ~ n^2 - 1,且元素值互不相同。给定一个元素值,求其上下左右的元素和以及对角线元素和(左上、右上、左下和右下)。

首先要找到这个给定的元素,再根据其下标计算元素和,对于大量重复地查询,可以记录每个元素值对应的下标。

每次定位的时间复杂度为 100,由于存在缓存,最多搜索 100 次,总复杂度为 10^4

我们也可以在初始化的时候直接建立 元素值 与 坐标的映射,时间复杂度降为 O(n^2) 即 100

还可以进一步优化,由于数据值是不可变的,可以提前将 相邻元素和 都计算好,查的时候无需重复计算。此外,由于元素各不相同,可以直接将元素值映射为下标,将元素值与坐标的映射改为元素值与相邻元素和的映射。

代码


/**
 * @date 2024-11-09 11:21
 */
public class NeighborSum3242 {

    class NeighborSum {

        int[][] adjacent = new int[][]{
                new int[]{-1, 0},
                new int[]{1, 0},
                new int[]{0, -1},
                new int[]{0, 1},
        };
        int[][] diagonal = new int[][]{
                new int[]{-1, -1},
                new int[]{-1, 1},
                new int[]{1, -1},
                new int[]{1, 1},
        };
        int[] adjacentSum;
        int[] diagonalSum;

        public NeighborSum(int[][] grid) {
            int index = 0;
            int n = grid.length;
            int length = n * n;
            adjacentSum = new int[length];
            diagonalSum = new int[length];
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    int value = grid[i][j];
                    adjacentSum[value] = sum(grid, i, j, adjacent);
                    diagonalSum[value] = sum(grid, i, j, diagonal);
                }
            }
        }

        public int adjacentSum(int value) {
            return adjacentSum[value];
        }

        public int diagonalSum(int value) {
            return diagonalSum[value];
        }

        private int sum(int[][] grid, int i, int j, int[][] directions){
            int res = 0;
            for (int[] direction : directions) {
                int row = direction[0] + i;
                int col = direction[1] + j;
                if (row < 0 || col < 0 || row >= grid.length || col >= grid.length) {
                    continue;
                }
                res += grid[row][col];
            }
            return res;
        }
    }

}

性能

1600.王位继承顺序

目标

一个王国里住着国王、他的孩子们、他的孙子们等等。每一个时间点,这个家庭里有人出生也有人死亡。

这个王国有一个明确规定的王位继承顺序,第一继承人总是国王自己。我们定义递归函数 Successor(x, curOrder) ,给定一个人 x 和当前的继承顺序,该函数返回 x 的下一继承人。

Successor(x, curOrder):
    如果 x 没有孩子或者所有 x 的孩子都在 curOrder 中:
        如果 x 是国王,那么返回 null
        否则,返回 Successor(x 的父亲, curOrder)
    否则,返回 x 不在 curOrder 中最年长的孩子

比方说,假设王国由国王,他的孩子 Alice 和 Bob (Alice 比 Bob 年长)和 Alice 的孩子 Jack 组成。

  1. 一开始, curOrder 为 ["king"].
  2. 调用 Successor(king, curOrder) ,返回 Alice ,所以我们将 Alice 放入 curOrder 中,得到 ["king", "Alice"] 。
  3. 调用 Successor(Alice, curOrder) ,返回 Jack ,所以我们将 Jack 放入 curOrder 中,得到 ["king", "Alice", "Jack"] 。
  4. 调用 Successor(Jack, curOrder) ,返回 Bob ,所以我们将 Bob 放入 curOrder 中,得到 ["king", "Alice", "Jack", "Bob"] 。
  5. 调用 Successor(Bob, curOrder) ,返回 null 。最终得到继承顺序为 ["king", "Alice", "Jack", "Bob"] 。

通过以上的函数,我们总是能得到一个唯一的继承顺序。

请你实现 ThroneInheritance 类:

  • ThroneInheritance(string kingName) 初始化一个 ThroneInheritance 类的对象。国王的名字作为构造函数的参数传入。
  • void birth(string parentName, string childName) 表示 parentName 新拥有了一个名为 childName 的孩子。
  • void death(string name) 表示名为 name 的人死亡。一个人的死亡不会影响 Successor 函数,也不会影响当前的继承顺序。你可以只将这个人标记为死亡状态。
  • string[] getInheritanceOrder() 返回 除去 死亡人员的当前继承顺序列表。

示例:

输入:
["ThroneInheritance", "birth", "birth", "birth", "birth", "birth", "birth", "getInheritanceOrder", "death", "getInheritanceOrder"]
[["king"], ["king", "andy"], ["king", "bob"], ["king", "catherine"], ["andy", "matthew"], ["bob", "alex"], ["bob", "asha"], [null], ["bob"], [null]]
输出:
[null, null, null, null, null, null, null, ["king", "andy", "matthew", "bob", "alex", "asha", "catherine"], null, ["king", "andy", "matthew", "alex", "asha", "catherine"]]

解释:
ThroneInheritance t= new ThroneInheritance("king"); // 继承顺序:king
t.birth("king", "andy"); // 继承顺序:king > andy
t.birth("king", "bob"); // 继承顺序:king > andy > bob
t.birth("king", "catherine"); // 继承顺序:king > andy > bob > catherine
t.birth("andy", "matthew"); // 继承顺序:king > andy > matthew > bob > catherine
t.birth("bob", "alex"); // 继承顺序:king > andy > matthew > bob > alex > catherine
t.birth("bob", "asha"); // 继承顺序:king > andy > matthew > bob > alex > asha > catherine
t.getInheritanceOrder(); // 返回 ["king", "andy", "matthew", "bob", "alex", "asha", "catherine"]
t.death("bob"); // 继承顺序:king > andy > matthew > bob(已经去世)> alex > asha > catherine
t.getInheritanceOrder(); // 返回 ["king", "andy", "matthew", "alex", "asha", "catherine"]

说明:

  • 1 <= kingName.length, parentName.length, childName.length, name.length <= 15
  • kingName,parentName, childName 和 name 仅包含小写英文字母。
  • 所有的参数 childName 和 kingName 互不相同。
  • 所有 death 函数中的死亡名字 name 要么是国王,要么是已经出生了的人员名字。
  • 每次调用 birth(parentName, childName) 时,测试用例都保证 parentName 对应的人员是活着的。
  • 最多调用 10^5 次birth 和 death 。
  • 最多调用 10 次 getInheritanceOrder 。

思路

首先要弄清皇位继承顺序,国王孩子中最大的先继承,如果他也有后代同样按照长幼继承,然后才轮到国王的次子继承。刚开始以为是先在老一辈里面按顺序继承,然后才轮到孩子辈的。国王生的孩子直接按顺序加入,如果国王死了就将继承国王的后代加入继承序列。

继承顺序可以有两种处理方式,一个是在出生与死亡的时候维护,另一个是在调用继承顺序方法的时候根据现有的状态生成。

动态维护的算法不容易实现,死亡的时候需要从继承序列中删除,出生时需要在特定位置插入,在哪插?

根据状态生成更容易实现,每次都是从开国的国王开始,按照继承规则遍历即可。写的时候也没有意识到这其实就是多叉树的前序遍历。

代码

/**
 * @date 2024-04-07 8:42
 */
public class ThroneInheritance1600 {

    private final Map<String, List<String>> children;

    private final Set<String> dead;

    private final String originator;

    public ThroneInheritance1600(String kingName) {
        originator = kingName;
        children = new HashMap<>();
        dead = new HashSet<>();
    }

    public void birth(String parentName, String childName) {
        children.computeIfAbsent(parentName, k -> new ArrayList<>()).add(childName);
    }

    public void death(String name) {
        dead.add(name);
    }

    public List<String> getInheritanceOrder() {
        List<String> curOrder = new ArrayList<>();
        if (!dead.contains(originator)) {
            curOrder.add(originator);
        }
        successor(originator, curOrder);
        return curOrder;
    }

    public void successor(String name, List<String> curOrder) {
        if (children.get(name) != null && children.get(name).size() != 0) {
            for (String child : children.get(name)) {
                if (!dead.contains(child)) {
                    curOrder.add(child);
                }
                successor(child, curOrder);
            }
        }
    }

    public static void main(String[] args) {
        ThroneInheritance1600 main = new ThroneInheritance1600("king");
        System.out.println(main.getInheritanceOrder());
        main.birth("king", "logan");
        main.birth("logan", "hosea");
        main.birth("king", "leonard");
        main.death("king");
        main.birth("logan", "carl");
        main.death("hosea");
        main.birth("leonard", "ronda");
        main.birth("logan", "betty");
        System.out.println(main.getInheritanceOrder());
    }
}

性能

1483.树节点的第K个祖先

目标

给你一棵树,树上有 n 个节点,按从 0 到 n-1 编号。树以父节点数组的形式给出,其中 parent[i] 是节点 i 的父节点。树的根节点是编号为 0 的节点。

树节点的第 k 个祖先节点是从该节点到根节点路径上的第 k 个节点。

实现 TreeAncestor 类:

  • TreeAncestor(int n, int[] parent) 对树和父数组中的节点数初始化对象。
  • getKthAncestor(int node, int k) 返回节点 node 的第 k 个祖先节点。如果不存在这样的祖先节点,返回 -1 。

说明:

  • 1 <= k <= n <= 5 * 10^4
  • parent[0] == -1 表示编号为 0 的节点是根节点。
  • 对于所有的 0 < i < n ,0 <= parent[i] < n 总成立
  • 0 <= node < n
  • 至多查询 5 * 10^4 次

思路

这个题让我们维护一个数据结构,来查找树中任意节点的第k个祖先节点。直接的想法是保存每一个节点的父节点,需要的时候直接根据下标获取。刚开始用的 int[][] 超出了空间限制,后来改成 List<Integer>[] 虽然多通过了几个测试用例,但是后面会超时。仔细分析最坏的情况下(所有节点仅有一个子树的情况),需要添加 n(n+1)/2 个父节点(首项为1,公差为1的等差数列求和),时间复杂度是O(n^2)。

一个解决办法是不要保存重复的父节点,以只有一个子树的情况举例,最后一个节点第k个祖先,就是其父节点的第k-1个祖先。如果这个节点已经保存有祖先节点的信息,就无需重复计算了。

所以我的解决方案就是使用缓存,如果父节点的祖先信息没有保存,就将当前节点的祖先信息写入缓存,直到遇到存在缓存的祖先节点,如果它记录的祖先节点个数大于k - cnt就直接返回,否则继续向该缓存的祖先节点集合添加,直到遇到下一个有缓存的节点或者cnt == k

这种方法虽然能够通过,但是与测试用例的的顺序是有关的,如果是从子节点逐步向前测试的话,缓存一直不命中,时间复杂度还是O(n^2)。

官方的解法使用的是倍增的思想,好像还挺常用的,算是个模板算法。核心思想是保存当前节点的父节点,爷爷节点,爷爷的爷爷节点......,即每个节点 x 的第 2^i 个祖先节点。这样不论k取什么值,都可以分解为不同的2的幂之和,然后向前查找即可。预处理的时间复杂度是O(nlogn),查询的时间复杂度是O(logk)。

代码

/**
 * @date 2024-04-06 9:45
 */
public class TreeAncestor1483 {

    /**倍增的写法 */
    public static class TreeAncestor_v4 {

        int[][] dp;

        public TreeAncestor_v4(int n, int[] parent) {
            dp = new int[16][];
            dp[0] = parent;
            for (int i = 1; i < 16; i++) {
                dp[i] = new int[n];
                Arrays.fill(dp[i], -1);
            }

            for (int i = 1; i < 16; i++) {
                for (int j = 0; j < n; j++) {
                    if (dp[i - 1][j] != -1) {
                        dp[i][j] = dp[i - 1][dp[i - 1][j]];
                    }
                }
            }
        }

        public int getKthAncestor(int node, int k) {
            int p = node;
            int b = 0;
            int mod;
            while (k != 0) {
                mod = k & 1;
                if (mod == 1) {
                    p = dp[b][p];
                    if (p == -1) {
                        return -1;
                    }
                }
                k = k >> 1;
                b++;
            }
            return p;
        }
    }

    int[] parent;
    List<Integer>[] cache;

    public TreeAncestor1483(int n, int[] parent) {
        this.parent = parent;
        cache = new ArrayList[n];
        for (int i = 0; i < cache.length; i++) {
            cache[i] = new ArrayList<>();
        }
    }

    public int getKthAncestor(int node, int k) {
        if (node == -1) {
            return -1;
        }
        int cnt = 0;
        int p = node;
        while (cnt != k && p != -1) {
            if (cache[p].size() == 0) {
                cache[node].add(parent[p]);
                p = parent[p];
                cnt++;
            } else {
                if (cache[p].size() >= k - cnt) {
                    return cache[p].get(k - cnt - 1);
                } else {
                    cnt += cache[p].size();
                    node = p;
                    p = cache[p].get(cache[p].size() - 1);
                }
            }

        }
        return p;
    }
}

性能

这里是使用缓存写法的耗时,官方题解的耗时差不多也是这个样。

使用倍增的写法

2671.频率跟踪器

目标

请你设计并实现一个能够对其中的值进行跟踪的数据结构,并支持对频率相关查询进行应答。

实现 FrequencyTracker 类:

  • FrequencyTracker():使用一个空数组初始化 FrequencyTracker 对象。
  • void add(int number):添加一个 number 到数据结构中。
  • void deleteOne(int number):从数据结构中删除一个 number 。数据结构 可能不包含 number ,在这种情况下不删除任何内容。
  • bool hasFrequency(int frequency): 如果数据结构中存在出现 frequency 次的数字,则返回 true,否则返回 false。

示例 1:

输入
["FrequencyTracker", "add", "add", "hasFrequency"]
[[], [3], [3], [2]]
输出
[null, null, null, true]

解释
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.add(3); // 数据结构现在包含 [3]
frequencyTracker.add(3); // 数据结构现在包含 [3, 3]
frequencyTracker.hasFrequency(2); // 返回 true ,因为 3 出现 2 次

示例 2:

输入
["FrequencyTracker", "add", "deleteOne", "hasFrequency"]
[[], [1], [1], [1]]
输出
[null, null, null, false]

解释
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.add(1); // 数据结构现在包含 [1]
frequencyTracker.deleteOne(1); // 数据结构现在为空 []
frequencyTracker.hasFrequency(1); // 返回 false ,因为数据结构为空

示例 3:

输入
["FrequencyTracker", "hasFrequency", "add", "hasFrequency"]
[[], [2], [3], [1]]
输出
[null, false, null, true]

解释
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.hasFrequency(2); // 返回 false ,因为数据结构为空
frequencyTracker.add(3); // 数据结构现在包含 [3]
frequencyTracker.hasFrequency(1); // 返回 true ,因为 3 出现 1 次

说明:

  • 1 <= number <= 10^5
  • 1 <= frequency <= 10^5
  • 最多调用 add、deleteOne 和 hasFrequency 共计 2 * 10^5 次

思路

这道题要我们写一个数据结构,能够实时追踪已保存数字的出现频率。我们可以很方便地使用Map记录数字出现的频率,但是无法直接判断频率是否存在。只能遍历EntrySet一个一个找。

于是考虑再记录一个以频率为Key,相应频率的数字个数为value的Map,以便直接判断是否存在相应的频率。

那么第一个Map是否可以省略呢?当然不行,因为数字新增或删除后,相应的频率也会发生变化。如果不记录的话,无法更新第二个Map。

当数字出现频率增加,除了要累加第一个Map相应数字的频率,还要同时将第二个Map原频率对应数字的个数减1,新频率对应数字的个数加1。

当数字出现频率减少,除了要减小第一个Map相应数字的频率,还要同时将第二个Map原频率对应数字的个数减1,新频率对应数字的个数加1。

代码

/**
 * @date 2024-03-21 8:57
 */
public class FrequencyTracker2671 {

    class FrequencyTracker {
        private final Map<Integer, Integer> elements;
        private final Map<Integer, Integer> fRecord;

        public FrequencyTracker() {
            elements = new HashMap<>();
            fRecord = new HashMap<>();
        }

        public void add(int number) {
            Integer f = elements.get(number) == null ? 0 : elements.get(number);
            if (f != 0) {
                fRecord.put(f, fRecord.get(f) - 1);
            }
            elements.merge(number, 1, Integer::sum);
            fRecord.merge(++f, 1, Integer::sum);
        }

        public void deleteOne(int number) {
            Integer f = elements.get(number) == null ? 0 : elements.get(number);
            if (f != 0) {
                elements.put(number, f - 1);
                fRecord.put(f, fRecord.get(f) - 1);
                fRecord.merge(--f, 1, Integer::sum);
            }
        }

        public boolean hasFrequency(int frequency) {
            return fRecord.get(frequency) != null && fRecord.get(frequency) > 0;
        }
    }

性能

有网友写的变长数组性能更高一些,如果是直接根据题目最大范围创建数组,针对这些测试案例性能反而不好。

2642.设计可以求最短路径的图类

目标

给你一个有 n 个节点的 有向带权 图,节点编号为 0 到 n - 1 。图中的初始边用数组 edges 表示,其中 edges[i] = [fromi, toi, edgeCosti] 表示从 fromi 到 toi 有一条代价为 edgeCosti 的边。

请你实现一个 Graph 类:

  • Graph(int n, int[][] edges) 初始化图有 n 个节点,并输入初始边。
  • addEdge(int[] edge) 向边集中添加一条边,其中 edge = [from, to, edgeCost] 。数据保证添加这条边之前对应的两个节点之间没有有向边。
  • int shortestPath(int node1, int node2) 返回从节点 node1 到 node2 的路径 最小 代价。如果路径不存在,返回 -1 。一条路径的代价是路径中所有边代价之和。

示例 1:

输入:
["Graph", "shortestPath", "shortestPath", "addEdge", "shortestPath"]
[[4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]], [3, 2], [0, 3], [[1, 3, 4]], [0, 3]]
输出:
[null, 6, -1, null, 6]

解释:
Graph g = new Graph(4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]);
g.shortestPath(3, 2); // 返回 6 。从 3 到 2 的最短路径如第一幅图所示:3 -> 0 -> 1 -> 2 ,总代价为 3 + 2 + 1 = 6 。
g.shortestPath(0, 3); // 返回 -1 。没有从 0 到 3 的路径。
g.addEdge([1, 3, 4]); // 添加一条节点 1 到节点 3 的边,得到第二幅图。
g.shortestPath(0, 3); // 返回 6 。从 0 到 3 的最短路径为 0 -> 1 -> 3 ,总代价为 2 + 4 = 6 。

说明:

  • 1 <= n <= 100
  • 0 <= edges.length <= n * (n - 1)
  • edges[i].length == edge.length == 3
  • 0 <= fromi, toi, from, to, node1, node2 <= n - 1
  • 1 <= edgeCosti, edgeCost <= 10^6
  • 图中任何时候都不会有重边和自环。
  • 调用 addEdge 至多 100 次。
  • 调用 shortestPath 至多 100 次。

思路

今天又手写了一遍Dijkstra算法,虽然通过了,但是性能差好多。对照着官网题解研究了一会,我也想把一些优化的点表达出来,但还是感觉没有理解透彻。又看了耗时最少的题解一脸懵,也看到了网友讲解的朴素 Dijkstra算法,有机会再研究补上吧。

代码

/**
 * @date 2024-03-26 8:35
 */
public class Graph {

    private final ArrayList<int[]>[] g;

    private PriorityQueue<int[]> q;

    private int[] dp;

    private int n;

    public Graph(int n, int[][] edges) {
        g = new ArrayList[n];
        for (int i = 0; i < g.length; i++) {
            g[i] = new ArrayList<>();
        }
        for (int i = 0; i < edges.length; i++) {
            g[edges[i][0]].add(new int[]{edges[i][1], edges[i][2]});
        }
        this.n = n;
    }

    public void addEdge(int[] edge) {
        g[edge[0]].add(new int[]{edge[1], edge[2]});
    }

    public int shortestPath(int node1, int node2) {
        q = new PriorityQueue<int[]>((a, b) -> a[1] - b[1]);
        dp = new int[n];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[node1] = 0;
        q.offer(new int[]{node1, 0});
        while (!q.isEmpty()) {
            int[] e = q.poll();
            if (e[0] == node2) {
                return dp[node2];
            }
            for (int[] edge : g[e[0]]) {
                if (dp[e[0]] + edge[1] < dp[edge[0]]) {
                    dp[edge[0]] = dp[e[0]] + edge[1];
                    q.offer(new int[]{edge[0], dp[edge[0]]});
                }

            }
        }
        return dp[node2] == Integer.MAX_VALUE ? -1 : dp[node2];
    }
}

性能