3200.三角形的最大高度

目标

给你两个整数 red 和 blue,分别表示红色球和蓝色球的数量。你需要使用这些球来组成一个三角形,满足第 1 行有 1 个球,第 2 行有 2 个球,第 3 行有 3 个球,依此类推。

每一行的球必须是 相同 颜色,且相邻行的颜色必须 不同。

返回可以实现的三角形的 最大 高度。

示例 1:

输入: red = 2, blue = 4
输出: 3
解释:
上图显示了唯一可能的排列方式。

示例 2:

输入: red = 2, blue = 1
输出: 2
解释:
上图显示了唯一可能的排列方式。

示例 3:

输入: red = 1, blue = 1
输出: 1

示例 4:

输入: red = 10, blue = 1
输出: 2
解释:
上图显示了唯一可能的排列方式。

说明:

  • 1 <= red, blue <= 100

思路

有红球 red 个,蓝球 blue 个,使用这两种球组成三角形,要求每一行只能由同一种颜色的球组成,且相邻行球的颜色不同,问三角形的最大高度。

三角形第 i 行球的个数为 i,奇数行的总个数为 1 + 3 + 5 + …… 偶数行的总个数为 2 + 4 + 6 + ……,根据等差数列求和公式,奇数行所需球的总个数为 oddRowCnt^2,偶数行所需球的总个数为 evenRowCnt^2 + evenRowCnt

假设 red 放在奇数行,代入可得 redOddRowCnt = sqrt(red),如果放在偶数行,则 redEvenRowCnt = (sqrt(1 + 4 * red) - 1) / 2。同理可求出 blueOddRowCnt blueEvenRowCnt

接下来分两种情况讨论:

  1. 红色球放第一行:如果 |redOddRowCnt - blueEvenRowCnt| > 1,取 Math.min(redOddRowCnt, blueEvenRowCnt) * 2 + 1,否则取 Math.min(redOddRowCnt, blueEvenRowCnt) * 2
  2. 蓝色球放第一行:如果 |blueOddRowCnt - redEvenRowCnt| > 1,取 Math.min(blueOddRowCnt, redEvenRowCnt) * 2 + 1,否则取 Math.min(blueOddRowCnt, redEvenRowCnt) * 2

取上面两种情况的最大值即可。

代码


/**
 * @date 2024-10-15 9:25
 */
public class MaxHeightOfTriangle3200 {

    public int maxHeightOfTriangle(int red, int blue) {
        int redOddRowCnt = (int) Math.sqrt(red);
        int redEvenRowCnt = (int) ((Math.sqrt(1 + 4 * red) - 1) / 2);
        int blueOddRowCnt = (int) Math.sqrt(blue);
        int blueEvenRowCnt = (int) ((Math.sqrt(1 + 4 * blue) - 1) / 2);
        int r, b;
        if (redOddRowCnt - blueEvenRowCnt >= 1) {
            r = 2 * blueEvenRowCnt + 1;
        } else {
            r = 2 * redOddRowCnt;
        }
        if (blueOddRowCnt - redEvenRowCnt >= 1) {
            b = 2 * redEvenRowCnt + 1;
        } else {
            b = 2 * blueOddRowCnt;
        }
        return Math.max(r, b);
    }

}

性能

1884.鸡蛋掉落-两枚鸡蛋

目标

给你 2 枚相同 的鸡蛋,和一栋从第 1 层到第 n 层共有 n 层楼的建筑。

已知存在楼层 f ,满足 0 <= f <= n ,任何从 高于 f 的楼层落下的鸡蛋都 会碎 ,从 f 楼层或比它低 的楼层落下的鸡蛋都 不会碎 。

每次操作,你可以取一枚 没有碎 的鸡蛋并把它从任一楼层 x 扔下(满足 1 <= x <= n)。如果鸡蛋碎了,你就不能再次使用它。如果某枚鸡蛋扔下后没有摔碎,则可以在之后的操作中 重复使用 这枚鸡蛋。

请你计算并返回要确定 f 确切的值 的 最小操作次数 是多少?

示例 1:

输入:n = 2
输出:2
解释:我们可以将第一枚鸡蛋从 1 楼扔下,然后将第二枚从 2 楼扔下。
如果第一枚鸡蛋碎了,可知 f = 0;
如果第二枚鸡蛋碎了,但第一枚没碎,可知 f = 1;
否则,当两个鸡蛋都没碎时,可知 f = 2。

示例 2:

输入:n = 100
输出:14
解释:
一种最优的策略是:
- 将第一枚鸡蛋从 9 楼扔下。如果碎了,那么 f 在 0 和 8 之间。将第二枚从 1 楼扔下,然后每扔一次上一层楼,在 8 次内找到 f 。总操作次数 = 1 + 8 = 9 。
- 如果第一枚鸡蛋没有碎,那么再把第一枚鸡蛋从 22 层扔下。如果碎了,那么 f 在 9 和 21 之间。将第二枚鸡蛋从 10 楼扔下,然后每扔一次上一层楼,在 12 次内找到 f 。总操作次数 = 2 + 12 = 14 。
- 如果第一枚鸡蛋没有再次碎掉,则按照类似的方法从 34, 45, 55, 64, 72, 79, 85, 90, 94, 97, 99 和 100 楼分别扔下第一枚鸡蛋。
不管结果如何,最多需要扔 14 次来确定 f 。

说明:

  • 1 <= n <= 1000

思路

有一个 1 ~ n 层楼的建筑,存在一个楼层 f,任何大于 f 层落下的鸡蛋都会摔碎。现在有两个鸡蛋,每次操作可以从任意楼层向下扔鸡蛋,如果鸡蛋碎了则无法再使用,求确定 f 值的最小操作次数。

为了确保能够找到 f,如果第一个尝试的鸡蛋碎了,那么另一个鸡蛋只能从已知的安全楼层一层一层向上尝试。

观察示例2,可以从 n 开始 减 1 2 3 …… i 直到小于等于零,返回 i - 1即可。

看了题解,这样做可行的逻辑是这样的:

假设已知最小操作次数 k,我们扔第一枚鸡蛋选第几层?显然,应该选第 k 层,因为如果第一枚鸡蛋碎了,只需要从 1 ~ k - 1 枚举即可。

如果第一枚鸡蛋没碎,那么下一次选第几层?现在还剩下 k - 1 次尝试,所以应该选 k + 1 + (k - 2) = k + (k - 1) 层,因为如果在该层扔鸡蛋碎了,只需从 k + 1 ~ k + k - 2 枚举即可,共 k - 2 次,再加上前面尝试的 2 次,总次数为 k

以此类推,我们可以确定总层数 n = k + (k - 1) + (k - 2) + …… + 2 + 1 = k * (k + 1)/2,解方程得 k = (sqrt(1+8*n) - 1)/2,结果需要向上取整。

代码


/**
 * @date 2024-10-13 19:30
 */
public class TwoEggDrop1884 {

    public int twoEggDrop_v1(int n) {
        return (int) Math.ceil((Math.sqrt(1 + 8 * n) - 1) / 2);
    }

    public int twoEggDrop(int n) {
        int i = 1;
        while (n > 0){
            n -= i++;
        }
        return i - 1;
    }
}

性能

3102.最小化曼哈顿距离

目标

给你一个下标从 0 开始的数组 points ,它表示二维平面上一些点的整数坐标,其中 points[i] = [xi, yi] 。

两点之间的距离定义为它们的 曼哈顿距离。两个单元格 (xi, yi) 和 (xj, yj) 之间的曼哈顿距离为 |xi - xj| + |yi - yj|。

请你恰好移除一个点,返回移除后任意两点之间的 最大 距离可能的 最小 值。

示例 1:

输入:points = [[3,10],[5,15],[10,2],[4,4]]
输出:12
解释:移除每个点后的最大距离如下所示:
- 移除第 0 个点后,最大距离在点 (5, 15) 和 (10, 2) 之间,为 |5 - 10| + |15 - 2| = 18 。
- 移除第 1 个点后,最大距离在点 (3, 10) 和 (10, 2) 之间,为 |3 - 10| + |10 - 2| = 15 。
- 移除第 2 个点后,最大距离在点 (5, 15) 和 (4, 4) 之间,为 |5 - 4| + |15 - 4| = 12 。
- 移除第 3 个点后,最大距离在点 (5, 15) 和 (10, 2) 之间的,为 |5 - 10| + |15 - 2| = 18 。
在恰好移除一个点后,任意两点之间的最大距离可能的最小值是 12 。

示例 2:

输入:points = [[1,1],[1,1],[1,1]]
输出:0
解释:移除任一点后,任意两点之间的最大距离都是 0 。

说明:

  • 3 <= points.length <= 10^5
  • points[i].length == 2
  • 1 <= points[i][0], points[i][1] <= 10^8

提示:

  • Notice that the Manhattan distance between two points [xi, yi] and [xj, yj] is max({xi - xj + yi - yj, xi - xj - yi + yj, - xi + xj + yi - yj, - xi + xj - yi + yj}).
  • If you replace points as [xi - yi, xi + yi] then the Manhattan distance is max(max(xi) - min(xi), max(yi) - min(yi)) over all i.
  • After those observations, the problem just becomes a simulation. Create multiset of points [xi - yi, xi + yi], you can iterate on a point you might remove and get the maximum Manhattan distance over all other points.

思路

有一些二维平面上的整数坐标点,移除其中一个点,求任意两点之间曼哈顿距离最大值的最小值。

n个点之间的曼哈顿距离有C(n,2) = n * (n - 1) / 2 个,移除其中一个点,最大值可能发生变化,需要找到其中最小的。

问题的关键是如何计算n个点之间曼哈顿距离的最大值,如果暴力计算,找出最大值的时间复杂度是 O(n^2),还要依次移除一个点找到其中的最小值,综合起来时间复杂度是 O(n^3)。点的个数最多 10^5,暴力求解会超时。

我么需要考虑曼哈顿距离有什么特性,找出最大值需要每一个都遍历吗?移除一个点对最大值有什么影响,需要重新计算吗?

看了题目的提示是使用变量替换将问题转化:两点(xi, yi) 与 (xj, yj) 之间的曼哈顿距离为|xi - xj| + |yi - yj|,去掉绝对值即 max({xi - xj + yi - yj, xi - xj - yi + yj, - xi + xj + yi - yj, - xi + xj - yi + yj}),令 ui = xi - yi, vi = xi + yi,则点 (xi, yi) 与 (xj, yj) 之间的曼哈顿距离转换为 max({vi - vj, ui - uj, uj - ui, vj - vi}) = max({|vi - vj|, |ui- uj|})对于所有的 i,j,曼哈顿距离的最大值为 max({max(vi) - min(vi), max(ui) - min(ui)})。这样找出曼哈顿距离最大值的时间复杂度减少为 O(n)

于是,我们只需要将坐标点转化为 (ui, vi),依次去除某个坐标点,再找出 u、v 的最大值与最小值即可。试了一下,O(n^2)的时间复杂度仍会超时。

我们可以记录一下vi、ui取最大最小值时的坐标,然后排除这几个坐标点后找出其中的最小值,最坏的情况即坐标没有重复,时间复杂度为O(4n)。

我也尝试了记录次大与次小值,试图将复杂度降为 O(n),但需要考虑去除掉相应坐标点后,另一个坐标是否会受到影响。例如,max({max(vi) - min(vi), max(ui) - min(ui)}) 假如我们删去了vi最大的坐标,取次大的vi,但是后面ui的最大与最小是否受到影响?

因此我们不仅需要一次遍历获取到最大与次大,还要再次遍历比较当前值是否是最大或最小,如果是则取次大或次小。需要注意,这里的最大与次大以及最小与次小的值可以相同。更进一步,如果我们同时保存了x、y 取最大、最小的四个坐标,我们只需排除这4个坐标即可,其它坐标对最大距离没有影响。

看了官网题解,转换后的距离称为切比雪夫距离。事实上,max({|vi - vj|, |ui - uj|}) 计算的是 (vi, ui) (vj, uj) 两点曼哈顿距离投影到 x 轴(|vi - vj|) 和 y 轴(|ui - uj|)的线段长度的最大值,即切比雪夫距离。注意本题中的u、v对应题解中v、u,并且使用的是x-y,而非y-x,不过对于求解没有什么影响,无非是关于坐标轴镜像了一下。

代码

/**
 * @date 2024-07-09 10:20
 */
public class MinimumDistance3102 {

    public int minimumDistance(int[][] points) {
        for (int[] point : points) {
            int u = point[0] - point[1];
            int v = point[0] + point[1];
            point[0] = u;
            point[1] = v;
        }
        int n = points.length;
        int res = Integer.MAX_VALUE;
        int maxX = Integer.MIN_VALUE;
        int minX = Integer.MAX_VALUE;
        int maxY = Integer.MIN_VALUE;
        int minY = Integer.MAX_VALUE;
        int maxXIndex = -1, minXIndex = -1, maxYIndex = -1, minYIndex = -1;
        List<Integer> exclude = new ArrayList<>();
        for (int j = 0; j < n; j++) {
            if (points[j][0] > maxX) {
                maxX = points[j][0];
                maxXIndex = j;
            }
            if (points[j][0] < minX) {
                minX = points[j][0];
                minXIndex = j;
            }
            if (points[j][1] > maxY) {
                maxY = points[j][1];
                maxYIndex = j;
            }
            if (points[j][1] < minY) {
                minY = points[j][1];
                minYIndex = j;
            }
        }
        exclude.add(maxXIndex);
        exclude.add(minXIndex);
        exclude.add(maxYIndex);
        exclude.add(minYIndex);
        for (Integer i : exclude) {
            maxX = Integer.MIN_VALUE;
            minX = Integer.MAX_VALUE;
            maxY = Integer.MIN_VALUE;
            minY = Integer.MAX_VALUE;
            for (int j = 0; j < n; j++) {
                if (i != j) {
                    maxX = Math.max(maxX, points[j][0]);
                    minX = Math.min(minX, points[j][0]);
                    maxY = Math.max(maxY, points[j][1]);
                    minY = Math.min(minY, points[j][1]);
                }
            }
            res = Math.min(res, Math.max(maxX - minX, maxY - minY));
        }
        return res;
    }
}

性能

2938.区分黑球与白球

目标

桌子上有 n 个球,每个球的颜色不是黑色,就是白色。

给你一个长度为 n 、下标从 0 开始的二进制字符串 s,其中 1 和 0 分别代表黑色和白色的球。

在每一步中,你可以选择两个相邻的球并交换它们。

返回「将所有黑色球都移到右侧,所有白色球都移到左侧所需的 最小步数」。

示例 1:

输入:s = "101"
输出:1
解释:我们可以按以下方式将所有黑色球移到右侧:
- 交换 s[0] 和 s[1],s = "011"。
最开始,1 没有都在右侧,需要至少 1 步将其移到右侧。

示例 2:

输入:s = "100"
输出:2
解释:我们可以按以下方式将所有黑色球移到右侧:
- 交换 s[0] 和 s[1],s = "010"。
- 交换 s[1] 和 s[2],s = "001"。
可以证明所需的最小步数为 2 。

示例 3:

输入:s = "0111"
输出:0
解释:所有黑色球都已经在右侧。

说明:

  • 1 <= n == s.length <= 10^5
  • s[i] 不是 '0',就是 '1'

思路

有一个数组,其元素值不是0就是1,现在需要将所有的1都移到右边,每一步可以选择相邻的两个元素交换其位置,问移动的最小步数。

从左向右遍历数组元素,如果值为1就累加cnt,如果值为0就将移动步数加上 cnt。简单来说就是遇到1就合并,记录其个数,遇到0就整体移动 res += cnt。每次移动都贪心地将0移至其最终位置上。

有网友提到可以使用归并排序记录逆序对。

还有网友是基于下标和计算的。因为最终0都在右边,其下标和可以通过等差数列求和得到。我们只需在遍历过程中记录0的个数,并累加0的下标,然后与最终状态的下标和相减即可。

代码

package medium;

/**
 * @date 2024-06-06 0:03
 */
public class MinimumSteps2938 {

    /**
     * 将黑球视为一个整体,遇到黑球则合并到一起增加其权重,这样就可以视为将一个带权黑球从左移到右,每一步都是必要的。
     * 这其实也算是在移动的过程中统计逆序对的个数
     */
    public long minimumSteps(String s) {
        long res = 0;
        int n = s.length();
        int i = 0;
        long cnt = 0;
        while (i < n) {
            if (s.charAt(i) == '0') {
                // 遇到0就移动  累加移动步数,可以使用双指针优化
                res += cnt;
            } else {
                // 遇到1则合并
                cnt++;
            }
            i++;
        }
        return res;
    }

    /**
     * 优化
     * 使用双指针可以减少累加次数
     */
    public long minimumSteps_v1(String s) {
        long res = 0;
        int n = s.length();
        int i = 0;
        // left指向1的位置,如果第一值是0,那么left与i一起右移
        // 如果第一个值是1,仅移动i,当遇到0时,左侧1的个数就是i-left
        // 本来从下标left到i元素个数为 i - left + 1,由于i指向的不是1,所以不用加1
        int left = 0;
        while (i < n) {
            if (s.charAt(i) == '0') {
                res += i - left;
                left++;
            }
            i++;
        }
        return res;
    }
}

性能

1103.分糖果II

目标

排排坐,分糖果。

我们买了一些糖果 candies,打算把它们分给排好队的 n = num_people 个小朋友。

给第一个小朋友 1 颗糖果,第二个小朋友 2 颗,依此类推,直到给最后一个小朋友 n 颗糖果。

然后,我们再回到队伍的起点,给第一个小朋友 n + 1 颗糖果,第二个小朋友 n + 2 颗,依此类推,直到给最后一个小朋友 2 * n 颗糖果。

重复上述过程(每次都比上一次多给出一颗糖果,当到达队伍终点后再次从队伍起点开始),直到我们分完所有的糖果。注意,就算我们手中的剩下糖果数不够(不比前一次发出的糖果多),这些糖果也会全部发给当前的小朋友。

返回一个长度为 num_people、元素之和为 candies 的数组,以表示糖果的最终分发情况(即 ans[i] 表示第 i 个小朋友分到的糖果数)。

示例 1:

输入:candies = 7, num_people = 4
输出:[1,2,3,1]
解释:
第一次,ans[0] += 1,数组变为 [1,0,0,0]。
第二次,ans[1] += 2,数组变为 [1,2,0,0]。
第三次,ans[2] += 3,数组变为 [1,2,3,0]。
第四次,ans[3] += 1(因为此时只剩下 1 颗糖果),最终数组变为 [1,2,3,1]。

示例 2:

输入:candies = 10, num_people = 3
输出:[5,2,3]
解释:
第一次,ans[0] += 1,数组变为 [1,0,0]。
第二次,ans[1] += 2,数组变为 [1,2,0]。
第三次,ans[2] += 3,数组变为 [1,2,3]。
第四次,ans[0] += 4,最终数组变为 [5,2,3]。

说明:

  • 1 <= candies <= 10^9
  • 1 <= num_people <= 1000

思路

现在有一些糖果要分给一排小朋友,第一个小朋友分1个,第二个分2个,依次类推,即分配的糖果总比上一次分的多一个,如果不够就剩多少分多少。如果一轮下来没有分完,就接着从第一个小朋友开始依次分配。问最终每个小朋友能够分得的糖果数量。

我们可以很容易地模拟这个分配过程,记录当前分配的糖果数量,并计算剩余糖果数量直到0。

网友最快的题解使用了数学公式,使时间复杂度从O(num_people+sqrt(candies)) 降为O(num_people)。

代码

/**
 * @date 2024-06-03 0:06
 */
public class DistributeCandies1103 {

    public int[] distributeCandies_v1(int candies, int num_people) {
        int[] res = new int[num_people];
        // 足量发放人次,解不等式:(n+1)n/2 <= candies
        int n = (int) ((Math.sqrt(candies * 8F + 1) - 1) / 2);
        // 足量发放的糖果数量,num_people <= 1000,其实不会溢出
        int distributed = (int) ((1L + n) * n / 2);
        // 剩余糖数量
        int remainder = candies - distributed;
        // 所有小朋友都得到糖果的轮次
        int allGetLoops = n / num_people;
        // 最后一轮获得糖果的人数
        int lastLoopNum = n % num_people;
        for (int i = 0; i < num_people; i++) {
            // 收到糖果的次数 = 所有小朋友都得到糖果的轮次 + 最后一轮是否发放
            int times = (lastLoopNum > i ? 1 : 0) + allGetLoops;
            // 等差数列求和,公差为 num_people,a1 = i + 1,n = times;
            res[i] = ((times - 1) * num_people + i * 2 + 2) * times / 2;
        }
        // 如果是最后一个,将剩余的全部分配
        res[lastLoopNum] += remainder;
        return res;
    }

    public int[] distributeCandies(int candies, int num_people) {
        int[] res = new int[num_people];
        int cnt = 1;
        while (candies > 0) {
            for (int i = 0; i < num_people && candies > 0; i++) {
                int num = Math.min(cnt++, candies);
                candies -= num;
                res[i] += num;
            }
        }
        return res;
    }

}

性能

2549. 统计桌面上的不同数字

目标

给你一个正整数 n ,开始时,它放在桌面上。在 10^9 天内,每天都要执行下述步骤:

  • 对于出现在桌面上的每个数字 x ,找出符合 1 <= i <= n 且满足 x % i == 1 的所有数字 i 。
  • 然后,将这些数字放在桌面上。

返回在 10^9 天之后,出现在桌面上的 不同 整数的数目。

注意:

  • 一旦数字放在桌面上,则会一直保留直到结束。
  • % 表示取余运算。例如,14 % 3 等于 2 。

示例 1:

输入:n = 5
输出:4
解释:最开始,5 在桌面上。 
第二天,2 和 4 也出现在桌面上,因为 5 % 2 == 1 且 5 % 4 == 1 。 
再过一天 3 也出现在桌面上,因为 4 % 3 == 1 。 
在十亿天结束时,桌面上的不同数字有 2 、3 、4 、5 。

示例 2:

输入:n = 3 
输出:2
解释: 
因为 3 % 2 == 1 ,2 也出现在桌面上。 
在十亿天结束时,桌面上的不同数字只有两个:2 和 3 。 

说明:

1 <= n <= 100

思路

这虽然是个简单题,但也不是一眼就能看出答案的。甚至条件稍微改一下就变得麻烦了,比如将10^9天改为有限的几天。

说回这道题,开始向桌面上放一个数字,然后需要找到对桌面数字取模余1的数,第二天将其也放在桌面上,如此循环。

对于数字n来说,n-1与1肯定是满足条件的,然后n-1的约数也符合条件。

考虑到是经过10^9天,每一天都可以减1,那么最终桌面上肯定有n-1个数字(除非桌面上一开始就一个数字1)。

代码

直接返回 n == 1 ? 1 : n - 1 即可。