3623.统计梯形的数目I

目标

给你一个二维整数数组 points,其中 points[i] = [xi, yi] 表示第 i 个点在笛卡尔平面上的坐标。

水平梯形 是一种凸四边形,具有 至少一对 水平边(即平行于 x 轴的边)。两条直线平行当且仅当它们的斜率相同。

返回可以从 points 中任意选择四个不同点组成的 水平梯形 数量。

由于答案可能非常大,请返回结果对 10^9 + 7 取余数后的值。

示例 1:

输入: points = [[1,0],[2,0],[3,0],[2,2],[3,2]]
输出: 3
解释:
有三种不同方式选择四个点组成一个水平梯形:
使用点 [1,0]、[2,0]、[3,2] 和 [2,2]。
使用点 [2,0]、[3,0]、[3,2] 和 [2,2]。
使用点 [1,0]、[3,0]、[3,2] 和 [2,2]。

示例 2:

输入: points = [[0,0],[1,0],[0,1],[2,1]]
输出: 1
解释:
只有一种方式可以组成一个水平梯形。

说明:

  • 4 <= points.length <= 10^5
  • –10^8 <= xi, yi <= 10^8
  • 所有点两两不同。

思路

有一些二维平面中的点 points,从中选取四个点组成水平梯形,返回水平梯形的数目。

水平梯形是有一对边平行于 x 轴的梯形。直接的想法是根据纵坐标分组,选两组,每组中选两个点。

可以直接计算每组的组合数 C(n, 2) = n * (n - 1) / 2,计算分组组合数的后缀和,根据乘法原理计算即可。

代码


/**
 * @date 2025-12-02 0:14
 */
public class CountTrapezoids2623 {

    /**
     * 执行通过
     */
    public int countTrapezoids(int[][] points) {
        Map<Integer, Integer> cnt = new HashMap<>();
        for (int[] point : points) {
            cnt.merge(point[1], 1, Integer::sum);
        }
        int mod = 1000000007;
        for (Map.Entry<Integer, Integer> entry : cnt.entrySet()) {
            Integer c = entry.getValue();
            cnt.put(entry.getKey(), (int) ((c * (c - 1L) / 2) % mod));
        }
        int[] comb = cnt.values().stream().mapToInt(x -> x).toArray();
        int n = comb.length;
        int[] suffix = new int[n + 1];
        for (int i = n - 1; i >= 0; i--) {
            suffix[i] = (suffix[i + 1] + comb[i]) % mod;
        }
        long res = 0L;
        for (int i = 0; i < n; i++) {
            res = (res + ((long) comb[i] * suffix[i + 1])) % mod;
        }
        return (int) res;
    }
}

性能

3512.使数组和能被K整除的最少操作次数

目标

给你一个整数数组 nums 和一个整数 k。你可以执行以下操作任意次:

  • 选择一个下标 i,并将 nums[i] 替换为 nums[i] - 1。

返回使数组元素之和能被 k 整除所需的最小操作次数。

示例 1:

输入: nums = [3,9,7], k = 5
输出: 4
解释:
对 nums[1] = 9 执行 4 次操作。现在 nums = [3, 5, 7]。
数组之和为 15,可以被 5 整除。

示例 2:

输入: nums = [4,1,3], k = 4
输出: 0
解释:
数组之和为 8,已经可以被 4 整除。因此不需要操作。

示例 3:

输入: nums = [3,2], k = 6
输出: 5
解释:
对 nums[0] = 3 执行 3 次操作,对 nums[1] = 2 执行 2 次操作。现在 nums = [0, 0]。
数组之和为 0,可以被 6 整除。

说明:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 1000
  • 1 <= k <= 100

思路

返回数组元素和模 k 的余数。

代码


/**
 * @date 2025-11-29 21:53
 */
public class MinOperations3512 {

    public int minOperations(int[] nums, int k) {
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        return sum % k;
    }
}

性能

1015.可被K整除的最小整数

目标

给定正整数 k ,你需要找出可以被 k 整除的、仅包含数字 1 的最 小 正整数 n 的长度。

返回 n 的长度。如果不存在这样的 n ,就返回-1。

注意: n 可能不符合 64 位带符号整数。

示例 1:

输入:k = 1
输出:1
解释:最小的答案是 n = 1,其长度为 1。

示例 2:

输入:k = 2
输出:-1
解释:不存在可被 2 整除的正整数 n 。

示例 3:

输入:k = 3
输出:3
解释:最小的答案是 n = 111,其长度为 3。

说明:

  • 1 <= k <= 10^5

思路

求仅包含数字 1 且能够整除正整数 k 的数字的最小长度,如不存在返回 -1

通俗讲就是多长的 11111…… 能够整除 k。为了防止溢出可以只考虑余数,关键是停止条件是什么?如何确定是否存在?

如果余数出现重复,由于计算的式子不变,后续会陷入循环。可以使用哈希表记录出现过的余数。或者循环 k 次,由于余数的范围只可能是 0 ~ k - 1k 个,如果循环 k 次还没有使余数为 0,那么根据鸽巢原理一定存在重复的余数。

代码


/**
 * @date 2025-11-25 9:26
 */
public class SmallestRepunitDivByK1015 {

    public int smallestRepunitDivByK(int k) {
        if (k == 1) {
            return 1;
        }
        int res = 1;
        int num = 1;
        while (res < k) {
            num = (num * 10 + 1) % k;
            res++;
            if (num == 0) {
                return res;
            }
        }
        return -1;
    }
}

性能

1018.可被5整除的二进制前缀

目标

给定一个二进制数组 nums ( 索引从0开始 )。

我们将 xi 定义为其二进制表示形式为子数组 nums[0..i] (从最高有效位到最低有效位)。

  • 例如,如果 nums =[1,0,1] ,那么 x0 = 1, x1 = 2, 和 x2 = 5。

返回布尔值列表 answer,只有当 xi 可以被 5 整除时,答案 answer[i] 为 true,否则为 false。

示例 1:

输入:nums = [0,1,1]
输出:[true,false,false]
解释:
输入数字为 0, 01, 011;也就是十进制中的 0, 1, 3 。只有第一个数可以被 5 整除,因此 answer[0] 为 true 。

示例 2:

输入:nums = [1,1,1]
输出:[false,false,false]

说明:

  • 1 <= nums.length <= 10^5
  • nums[i] 仅为 0 或 1

思路

有一个二进制数组 nums,定义 xi 为二进制表示为 子数组 [0, i] 的数字,判断 x0 ~ x_(n-1) 能否被 5 整除。

模拟存在的问题是左移多次会溢出。假设 num = k * 5 + mod,左移 1 位相当于乘以 22 * num = k * 10 + 2 * mod,能否被 5 整除只需考虑 2 * mod | nums[i]

代码


/**
 * @date 2025-11-24 8:52
 */
public class PrefixesDivBy5_1018 {

    public List<Boolean> prefixesDivBy5_v1(int[] nums) {
        List<Boolean> res = new ArrayList<>();
        int mod = 0;
        for (int num : nums) {
            mod = (mod << 1) % 5 + num;
            res.add(mod % 5 == 0);
        }
        return res;
    }

}

性能

3190.使所有元素都可以被3整除的最少操作数

目标

给你一个整数数组 nums 。一次操作中,你可以将 nums 中的 任意 一个元素增加或者减少 1 。

请你返回将 nums 中所有元素都可以被 3 整除的 最少 操作次数。

示例 1:

输入:nums = [1,2,3,4]
输出:3
解释:
通过以下 3 个操作,数组中的所有元素都可以被 3 整除:
将 1 减少 1 。
将 2 增加 1 。
将 4 减少 1 。

示例 2:

输入:nums = [3,6,9]
输出:0

说明:

1 <= nums.length <= 50
1 <= nums[i] <= 50

思路

统计数组中不能被 3 整除的元素个数。

代码


/**
 * @date 2025-11-22 2:02
 */
public class MinimumOperations3190 {

    public int minimumOperations(int[] nums) {
        int res = 0;
        for (int num : nums) {
            if (num % 3 != 0){
                res++;
            }
        }
        return res;
    }
}

性能

1513.仅含1的子串数

目标

给你一个二进制字符串 s(仅由 '0' 和 '1' 组成的字符串)。

返回所有字符都为 1 的子字符串的数目。

由于答案可能很大,请你将它对 10^9 + 7 取模后返回。

示例 1:

输入:s = "0110111"
输出:9
解释:共有 9 个子字符串仅由 '1' 组成
"1" -> 5 次
"11" -> 3 次
"111" -> 1 次

示例 2:

输入:s = "101"
输出:2
解释:子字符串 "1" 在 s 中共出现 2 次

示例 3:

输入:s = "111111"
输出:21
解释:每个子字符串都仅由 '1' 组成

示例 4:

输入:s = "000"
输出:0

说明:

  • s[i] == '0' 或 s[i] == '1'
  • 1 <= s.length <= 10^5

思路

统计全一子串的个数。

根据等差数列求和公式计算即可。

代码


/**
 * @date 2025-11-16 22:17
 */
public class NumSub1513 {

    public int numSub(String s) {
        int mod = 1000000007;
        int n = s.length();
        int res = 0;
        for (int i = 0; i < n; i++) {
            if (s.charAt(i) == '0') {
                continue;
            }
            int start = i;
            while (i < n && s.charAt(i) == '1'){
                i++;
            }
            int cnt = i - start;
            res += ((cnt + 1L) * cnt / 2) % mod;

        }
        return res;
    }

}

性能

2654.使数组所有元素变成1的最少操作次数

目标

给你一个下标从 0 开始的 正 整数数组 nums 。你可以对数组执行以下操作 任意 次:

  • 选择一个满足 0 <= i < n - 1 的下标 i ,将 nums[i] 或者 nums[i+1] 两者之一替换成它们的最大公约数。

请你返回使数组 nums 中所有元素都等于 1 的 最少 操作次数。如果无法让数组全部变成 1 ,请你返回 -1 。

两个正整数的最大公约数指的是能整除这两个数的最大正整数。

示例 1:

输入:nums = [2,6,3,4]
输出:4
解释:我们可以执行以下操作:
- 选择下标 i = 2 ,将 nums[2] 替换为 gcd(3,4) = 1 ,得到 nums = [2,6,1,4] 。
- 选择下标 i = 1 ,将 nums[1] 替换为 gcd(6,1) = 1 ,得到 nums = [2,1,1,4] 。
- 选择下标 i = 0 ,将 nums[0] 替换为 gcd(2,1) = 1 ,得到 nums = [1,1,1,4] 。
- 选择下标 i = 2 ,将 nums[3] 替换为 gcd(1,4) = 1 ,得到 nums = [1,1,1,1] 。

示例 2:

输入:nums = [2,10,6,14]
输出:-1
解释:无法将所有元素都变成 1 。

说明:

  • 2 <= nums.length <= 50
  • 1 <= nums[i] <= 10^6

思路

有一个正整数数组 nums,每次操作可以将 nums[i] 或者 nums[i + 1] 替换成它们的最大公约数。求将 nums 所有元素变为 1 的最小操作次数,如果无法完成,返回 -1

显然只要存在相邻的互质元素,就可以将其中的一个设置为 1,然后就可以将左右的元素按顺序替换为 1,总共需要操作 n 次。目标是如何用最小的操作次数使得存在一对相邻元素互质。暴力枚举 子数组 的起点与终点,计算所有元素的最大公约数,记录最小的子数组长度。

代码


/**
 * @date 2025-11-12 9:07
 */
public class MinOperations2654 {

    public int minOperations(int[] nums) {
        int n = nums.length;
        int res = Integer.MAX_VALUE;
        int oneCnt = 0;
        int gcdAll = nums[0];
        for (int num : nums) {
            if (num == 1) {
                oneCnt++;
            }
            gcdAll = gcd(gcdAll, num);
        }
        if (gcdAll > 1) {
            return -1;
        }
        if (oneCnt > 0) {
            return n - oneCnt;
        }
        for (int i = 0; i < n; i++) {
            int g = nums[i];
            for (int j = i; j < n; j++) {
                g = gcd(g, nums[j]);
                if (g == 1) {
                    res = Math.min(res, j - i + 1);
                    break;
                }
            }
        }
        return res - 2 + n;
    }

    public int gcd(int a, int b) {
        if (b == 0) {
            return a;
        }
        return gcd(b, a % b);
    }

}

性能

2169.得到0的操作数

目标

给你两个 非负 整数 num1 和 num2 。

每一步 操作 中,如果 num1 >= num2 ,你必须用 num1 减 num2 ;否则,你必须用 num2 减 num1 。

  • 例如,num1 = 5 且 num2 = 4 ,应该用 num1 减 num2 ,因此,得到 num1 = 1 和 num2 = 4 。然而,如果 num1 = 4且 num2 = 5 ,一步操作后,得到 num1 = 4 和 num2 = 1 。

返回使 num1 = 0 或 num2 = 0 的 操作数 。

示例 1:

输入:num1 = 2, num2 = 3
输出:3
解释:
- 操作 1 :num1 = 2 ,num2 = 3 。由于 num1 < num2 ,num2 减 num1 得到 num1 = 2 ,num2 = 3 - 2 = 1 。
- 操作 2 :num1 = 2 ,num2 = 1 。由于 num1 > num2 ,num1 减 num2 。
- 操作 3 :num1 = 1 ,num2 = 1 。由于 num1 == num2 ,num1 减 num2 。
此时 num1 = 0 ,num2 = 1 。由于 num1 == 0 ,不需要再执行任何操作。
所以总操作数是 3 。

示例 2:

输入:num1 = 10, num2 = 10
输出:1
解释:
- 操作 1 :num1 = 10 ,num2 = 10 。由于 num1 == num2 ,num1 减 num2 得到 num1 = 10 - 10 = 0 。
此时 num1 = 0 ,num2 = 10 。由于 num1 == 0 ,不需要再执行任何操作。
所以总操作数是 1 。

说明:

  • 0 <= num1, num2 <= 10^5

思路

两个非负整数 num1num2,如果 num1 >= num2num1 -= num2,否则 num2 -= num1,直到 num1num2 变为 0

依题意模拟即可。

代码


/**
 * @date 2025-11-09 23:53
 */
public class CountOperations2169 {

    public int countOperations(int num1, int num2) {
        int res = 0;
        while (num1 != 0 && num2 != 0) {
            if (num1 >= num2) {
                num1 -= num2;
            } else {
                num2 -= num1;
            }
            res++;
        }
        return res;
    }
}

性能

3289.数字小镇中的捣蛋鬼

目标

数字小镇 Digitville 中,存在一个数字列表 nums,其中包含从 0 到 n - 1 的整数。每个数字本应 只出现一次,然而,有 两个 顽皮的数字额外多出现了一次,使得列表变得比正常情况下更长。

为了恢复 Digitville 的和平,作为小镇中的名侦探,请你找出这两个顽皮的数字。

返回一个长度为 2 的数组,包含这两个数字(顺序任意)。

示例 1:

输入: nums = [0,1,1,0]
输出: [0,1]
解释:
数字 0 和 1 分别在数组中出现了两次。

示例 2:

输入: nums = [0,3,2,1,3,2]
输出: [2,3]
解释:
数字 2 和 3 分别在数组中出现了两次。

示例 3:

输入: nums = [7,1,5,4,3,4,6,0,9,5,8,2]
输出: [4,5]
解释:
数字 4 和 5 分别在数组中出现了两次。

说明:

  • 2 <= n <= 100
  • nums.length == n + 2
  • 0 <= nums[i] < n
  • 输入保证 nums 中 恰好 包含两个重复的元素。

思路

长度为 n + 2 的数组,其元素由 0 1 2 …… n - 1 n 个数字以及该范围内的两个任意数字组成,找出这两个重复数字。

简单的做法是对每个元素计数,找出出现次数为 2 的元素。但是空间复杂度为 O(n)

进阶的做法是使用位运算得到这两个重复数字的异或值,这两个数字至少有一个 bit 位不同,根据该 bit 位分组,最终得到这两个数字。

代码


/**
 * @date 2025-10-31 9:05
 */
public class GetSneakyNumbers3289 {

    public int[] getSneakyNumbers(int[] nums) {
        int n = nums.length;
        int[] cnt = new int[n];
        List<Integer> list = new ArrayList<>();
        for (int num : nums) {
            cnt[num]++;
            if (cnt[num] == 2){
                list.add(num);
            }
        }
        int[] res = new int[2];
        for (int i = 0; i < 2; i++) {
            res[i] = list.get(i);
        }
        return res;
    }
}

性能

3370.仅含置位位的最小整数

目标

给你一个正整数 n。

返回 大于等于 n 且二进制表示仅包含 置位 位的 最小 整数 x 。

置位 位指的是二进制表示中值为 1 的位。

示例 1:

输入: n = 5
输出: 7
解释:
7 的二进制表示是 "111"。

示例 2:

输入: n = 10
输出: 15
解释:
15 的二进制表示是 "1111"。

示例 3:

输入: n = 3
输出: 3
解释:
3 的二进制表示是 "11"。

说明:

  • 1 <= n <= 1000

思路

返回大于等于 n 并且所有 bit 位均为 1 的最小整数。

代码


/**
 * @date 2025-10-29 8:40
 */
public class SmallestNumber3370 {

    public int smallestNumber(int n) {
        int l = 32 - Integer.numberOfLeadingZeros(n);
        return (1 << l) - 1;
    }

}

性能