961.在长度2N的数组中找出重复N次的元素

目标

给你一个整数数组 nums ,该数组具有以下属性:

  • nums.length == 2 * n.
  • nums 包含 n + 1 个 不同的 元素
  • nums 中恰有一个元素重复 n 次

找出并返回重复了 n 次的那个元素。

示例 1:

输入:nums = [1,2,3,3]
输出:3

示例 2:

输入:nums = [2,1,2,5,3,2]
输出:2

示例 3:

输入:nums = [5,1,5,2,5,3,5,4]
输出:5

说明:

  • 2 <= n <= 5000
  • nums.length == 2 * n
  • 0 <= nums[i] <= 10^4
  • nums 由 n + 1 个 不同的 元素组成,且其中一个元素恰好重复 n 次

思路

长度为 2 * n 数组 numsn + 1 个不同元素,其中恰好有一个元素重复 n 次,返回该重复元素。

除了该重复元素,其余元素各不相同。

暴力做法是使用哈希表记录元素的出现次数,如果出现次数大于 1,直接返回,空间复杂度为 O(n)

对于本题,从下标 1 开始与第一个元素比较,如果相等直接返回。否则问题变成从 2n - 1 个元素中找重复 n 次的元素,重复元素占绝对多数,可以使用摩尔投票算法。

还可以根据重复元素的最小间隔来分析:

  • 假设重复元素至少隔着一个其它元素,有 n - 1 个空隙,至少有 2 * n - 1 个元素,可能。
  • 假设重复元素至少隔着两个其它元素,有 n - 1 个空隙,至少有 n + 2 * (n - 1) = 3 * n - 2 个元素,当 n = 2 时,有可能,当 n > 2 时,必定存在一个重复元素的间隔小于 2,否则元素个数不够

也就是说,可以检查当前元素与其前 123 个元素是否相等来找出该重复元素。空间复杂度为 O(1)

以上算法的时间复杂度均为 O(n),还有一种期望 O(1) 的算法,使用随机数,随机选取两个元素。它们两个相等的概率是 n/2n × (n - 1)/(2n - 1) = 1/2 * (1 - 1/n)/(2 - 1/n),当 n = 2 时,p = 1/6,当 n -> ∞p -> 1/4。期望循环次数 <= 6。

代码


/**
 * @date 2026-01-04 14:45
 */
public class RepeatedNTimes961 {

    public int repeatedNTimes_v1(int[] nums) {
        int n = nums.length;
        int candidate = 0;
        int vote = 0;
        for (int i = 1; i < n; i++) {
            if (nums[i] == nums[0]) {
                return nums[0];
            }
            if (vote == 0) {
                candidate = nums[i];
                vote = 1;
            } else if (candidate != nums[i]) {
                vote--;
            } else {
                return candidate;
            }
        }
        return candidate;
    }

    public int repeatedNTimes(int[] nums) {
        for (int i = 1; i < nums.length; i++) {
            if (nums[i] == nums[i - 1] || (i >= 2 && nums[i] == nums[i - 2]) || (i >= 3 && nums[i] == nums[i - 3])) {
                return nums[i];
            }
        }
        return 0;
    }

}

性能

169.多数元素

目标

给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在多数元素。

示例 1:

输入:nums = [3,2,3]
输出:3
示例 2:

输入:nums = [2,2,1,1,1,2,2]
输出:2

说明:

  • n == nums.length
  • 1 <= n <= 5 * 104
  • -109 <= nums[i] <= 109

进阶:尝试设计时间复杂度为 O(n)、空间复杂度为 O(1) 的算法解决此问题。

思路

今天做个简单题吧。要求时间复杂度是O(n),那么就不能嵌套循环,空间复杂度度是O(1),也就不能开辟新数组。很自然的可以想到:累加当前出现次数 count 最多的元素 res,如果遇到其它元素则减1,当 count 为负数时,说明当前出现次数最多的元素 可能 发生改变,将res替换为当前元素,并将count置1。

这里说 可能,是因为只要遇到与所选元素值不相等的, count 就减1。我们并不清楚这些其它元素值是否都相同,只能够推出当初所选的多数被其它少数反超了。但是从总体来考虑,如果我们所选择的真是多数元素,那么它一定会在后面再次反超。

官网介绍了一种投票算法 Boyer-Moore,应该也是这种思路吧。

官网还给出了一种分治算法,主要思想是:如果将数组分成两部分,那么数组的众数至少是一部分的众数。递归求解,然后回溯合并,确定子数组众数。不过时间复杂度O(nlog⁡n),参考算法导论P53主定理。空间复杂度:O(log⁡n),递归用到的栈空间。

代码

/**
 * @date 2024-03-02 22:24
 */
public class MajorityElement {
    public int majorityElement(int[] nums) {
        int res = nums[0];
        int count = 1;
        for (int i = 1; i < nums.length; i++) {
            if (nums[i] != res) {
                count--;
                // 出错点:反超时应当将值设为1,参考错误用例[10,9,9,9,10]
                if (count < 0) {
                    res = nums[i];
                    count = 1;
                }
            } else {
                count++;
            }
            // 本以为加上可以提高性能,谁知道还慢了2ms
            // if (count > Math.floor(nums.length / 2.0)) {
            //     break;
            // }
        }
        return res;
    }

    public static void main(String[] args) {
        MajorityElement main = new MajorityElement();
        System.out.println(main.majorityElement(new int[]{10, 9, 9, 9, 10}));
    }
}

性能

本以为判断条件可以提高效率,谁知道还慢了2ms,耗时增加了2倍,因为每次算出答案基本上也都循环完了。