924.尽量减少恶意软件的传播

目标

给出了一个由 n 个节点组成的网络,用 n × n 个邻接矩阵图 graph 表示。在节点网络中,当 graph[i][j] = 1 时,表示节点 i 能够直接连接到另一个节点 j。

一些节点 initial 最初被恶意软件感染。只要两个节点直接连接,且其中至少一个节点受到恶意软件的感染,那么两个节点都将被恶意软件感染。这种恶意软件的传播将继续,直到没有更多的节点可以被这种方式感染。

假设 M(initial) 是在恶意软件停止传播之后,整个网络中感染恶意软件的最终节点数。

如果从 initial 中移除某一节点能够最小化 M(initial), 返回该节点。如果有多个节点满足条件,就返回索引最小的节点。

请注意,如果某个节点已从受感染节点的列表 initial 中删除,它以后仍有可能因恶意软件传播而受到感染。

示例 1:

输入:graph = [[1,1,0],[1,1,0],[0,0,1]], initial = [0,1]
输出:0

示例 2:

输入:graph = [[1,0,0],[0,1,0],[0,0,1]], initial = [0,2]
输出:0

示例 3:

输入:graph = [[1,1,1],[1,1,1],[1,1,1]], initial = [1,2]
输出:1

说明:

  • n == graph.length
  • n == graph[i].length
  • 2 <= n <= 300
  • graph[i][j] == 0 或 1.
  • graph[i][j] == graph[j][i]
  • graph[i][i] == 1
  • 1 <= initial.length <= n
  • 0 <= initial[i] <= n - 1
  • initial 中所有整数均不重复

思路

初始 已感染恶意软件的节点集合中去掉一个节点使得整个网络的感染节点数量最小,返回这个节点。注意,从初始被感染的集合中去除,并不代表后续不会再被感染。如果还有与它连通的恶意节点,那么仍会被感染,最终计算感染节点时要算上。

因此,如果被感染节点是连通的,去掉任一感染节点后,总的感染节点数量不会改变。这时需要将索引最小的节点返回。

刚开始的想法是先排除相互的连通的感染节点,然后取剩余节点中连接节点个数最多的那个。

这个想法没错,但是具体实现的时候,仅仅判断直接相连的两个节点是否同时在感染列表显然是不对的,因为存在间接连接的情况。并且直接从感染集合移除还好影响后续其它节点的判断。

于是想到了使用并查集。

官网的解法类似,将连通的节点染成同一颜色,然后在感染节点中看是否有颜色唯一的节点,即该连通区域中只有一个感染节点,然后找出连通区域节点数最大的,如果有多个颜色唯一节点,返回下标最小的。如果没有颜色唯一的节点,那么移除任一感染节点,总的感染数都不会减少,直接取下标最小的即可。

判断区域是否连通可以使用并查集,也可以使用深度优先搜索。

代码

/**
 * @date 2024-04-16 8:29
 */
public class MinMalwareSpread924 {

    public int[] u;
    TreeSet<Integer> s;
    HashSet<Integer> d = new HashSet<>();

    public void merge(int x, int y) {
        HashSet<Integer> tmp = new HashSet<>();
        int rx = find(x, tmp);
        int ry = find(y, tmp);
        d.addAll(tmp);
        if (s.contains(rx) && s.contains(ry)) {
            if (rx > ry) {
                u[rx] = ry;
            } else if (rx < ry) {
                u[ry] = rx;
            }
        } else if (s.contains(ry)) {
            u[rx] = ry;
        } else {
            u[ry] = rx;
        }
    }

    public int find(int x, HashSet<Integer> tmp) {
        if (x != u[x]) {
            if (s.contains(x) && s.contains(u[x])) {
                tmp.add(x);
                tmp.add(u[x]);
            }
            x = find(u[x], tmp);
        }
        return u[x];
    }

    public int find(int x) {
        if (x != u[x]) {
            x = find(u[x]);
        }
        return u[x];
    }

    public int count(int x) {
        int cnt = 0;
        int rt = find(x);
        for (int i = 0; i < u.length; i++) {
            if (rt == find(i)) {
                cnt++;
            }
        }
        return cnt;
    }

    public int minMalwareSpread(int[][] graph, int[] initial) {
        int n = graph.length;
        List<Integer>[] g = new ArrayList[n];
        u = new int[n];
        for (int i = 0; i < n; i++) {
            g[i] = new ArrayList<>(n);
            u[i] = i;
        }

        s = new TreeSet<>();
        for (int i : initial) {
            s.add(i);
        }
        int res = s.first();
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (graph[i][j] == 1) {
                    g[i].add(j);
                    merge(i, j);
                }
            }
        }
        if (s.size() == d.size()) {
            return res;
        }
        TreeSet<Integer> ini = new TreeSet<>((x, y) -> count(y) - count(x) == 0 ? x - y : count(y) - count(x));
        for (int i : initial) {
            if (!d.contains(i)) {
                ini.add(i);
            }
        }

        return ini.first();
    }

}

性能

2368.受限条件下可到达节点的数目

目标

现有一棵由 n 个节点组成的无向树,节点编号从 0 到 n - 1 ,共有 n - 1 条边。

给你一个二维整数数组 edges ,长度为 n - 1 ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条边。另给你一个整数数组 restricted 表示 受限 节点。

在不访问受限节点的前提下,返回你可以从节点 0 到达的 最多 节点数目。

注意,节点 0 不 会标记为受限节点。

思路

自然的想法是构建图,将受限节点从中删除,然后深度优先遍历,同时记录节点个数。这里构建的图主要是为了获取其连通节点进行dfs,HashSet不太适合。因为数据可能并不是连续存储的,要先计算元素的Hash值,然后从桶中取出链表或者红黑树,才能找到元素。在本例中,性能会下降一倍。

代码

/**
 * @date 2024-03-02 15:39
 */
public class ReachableNodes {
    public int res = 1;
    boolean[] isRestricted;

    public int reachableNodes(int n, int[][] edges, int[] restricted) {
        List<Integer>[] g = new ArrayList[edges.length + 1];
        isRestricted = new boolean[edges.length + 1];
        for (int i : restricted) {
            isRestricted[i] = true;
        }
        for (int i = 0; i < g.length; i++) {
            g[i] = new ArrayList<>();
        }
        for (int[] edge : edges) {
            if (isRestricted[edge[0]] || isRestricted[edge[1]]) {
                continue;
            }
            g[edge[0]].add(edge[1]);
            g[edge[1]].add(edge[0]);
        }
        dfs(0, -1, g);
        return res;
    }

    public void dfs(int root, int parent, List<Integer>[] g) {
        for (Integer n : g[root]) {
            if (n == parent) {
                continue;
            }
            res++;
            dfs(n, root, g);
        }
    }
}

性能

看了官网的答案还可以使用并查集,耗时只要10ms,有时间可以看看。

2867.统计树中的合法路径数目

目标

给你一棵 n 个节点的无向树,节点编号为 1 到 n 。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ui, vi] 表示节点 ui 和 vi 在树中有一条边。

请你返回树中的 合法路径数目 。

如果在节点 a 到节点 b 之间 恰好有一个 节点的编号是质数,那么我们称路径 (a, b) 是 合法的 。

注意:

  • 路径 (a, b) 指的是一条从节点 a 开始到节点 b 结束的一个节点序列,序列中的节点 互不相同 ,且相邻节点之间在树上有一条边。
  • 路径 (a, b) 和路径 (b, a) 视为 同一条 路径,且只计入答案 一次 。

思路

质数是指在大于1的自然数(非负整数)中,除了1和它本身以外不再有其他因数的自然数。

现在有一颗 n 个节点的无向树,要求任意两个连通节点间恰好有一个质数节点的路径数。树是一种无环连通图,问题可以转化为从树中选取两个节点,节点之间的路径只经过一个质数节点。由于没有环,所以两点之间的路径是唯一的。

  1. 两个都是质数节点要排除掉。
  2. 以质数节点为中心,与它邻接的非质数节点符合条件。即以质数节点为中心加上与之相连的非质数节点任取两个均可。我们可以称直接与质数节点相连的非质数节点为直接节点。
  3. 直接节点连通的非质数节点也可能满足条件,需要要减去直接节点向外连通的路径,即直接节点加上其向外连通的节点之间任取两个的路径数。

按照上面的思路,先要找到所有的质数节点,涉及到质数判断。同时保存与之直接相连的非质数节点。然后保存非质数节点的边,使用Map保存,边的两个端点都保存进去,方便后续向外查找连通的节点。

得到满足条件的节点总数,根据排列组合公式C(n,2) = n!/(2!(n-2)!) = (n-1)n/2 求得路径总数D。

将外围节点k向外连通节点总数记为Ik,无效路径数为(Ik-1)Ik/2

最终的结果就是D - Σ(Ik-1)Ik/2

代码

/**
 * @date 2024-02-27 0:22
 */
public class CountPaths {

    public Map<Integer, Set<Integer>> primeEdges = new HashMap<>();
    public Map<Integer, Set<Integer>> notPrimeEdges = new HashMap<>();
    public Map<Integer, Integer> indirectNodesNumMap = new HashMap<>();
    Set<Integer> counter = new HashSet<>();

    public long countPaths(int n, int[][] edges) {
        for (int i = 0; i < n - 1; i++) {
            int[] edge = edges[i];
            boolean i0 = isPrimeNumber(edge[0]);
            boolean i1 = isPrimeNumber(edge[1]);
            if (i0 && !i1) {
                primeEdges.computeIfAbsent(edge[0], k -> new HashSet<>());
                primeEdges.get(edge[0]).add(edge[1]);
            } else if (!i0 && i1) {
                primeEdges.computeIfAbsent(edge[1], k -> new HashSet<>());
                primeEdges.get(edge[1]).add(edge[0]);
            } else if(!i0){
                notPrimeEdges.computeIfAbsent(edge[0], k -> new HashSet<>());
                notPrimeEdges.computeIfAbsent(edge[1], k -> new HashSet<>());
                notPrimeEdges.get(edge[0]).add(edge[1]);
                notPrimeEdges.get(edge[1]).add(edge[0]);
            }
        }
        long res = 0;
        for (Integer primeNode : primeEdges.keySet()) {
            Set<Integer> nonPrimeNodesOfPrimeEdge = primeEdges.get(primeNode);
            counter.clear();
            int total = 0;
            for (int nonPrimeNode : nonPrimeNodesOfPrimeEdge) {
                counter.add(nonPrimeNode);
                if (indirectNodesNumMap.get(nonPrimeNode) == null) {
                    indirectNodesNumMap.put(nonPrimeNode, 1);
                    countEdges(nonPrimeNode, nonPrimeNode);
                }
                total += indirectNodesNumMap.get(nonPrimeNode);
            }
            total = total + 1;
            res += total * (total - 1L) / 2L;
            for (int nonPrimeNode : nonPrimeNodesOfPrimeEdge) {
                int indirectNodesNum = indirectNodesNumMap.get(nonPrimeNode);
                res -= indirectNodesNum * (indirectNodesNum - 1L) / 2L;
            }
        }
        return res;
    }

    public Set<Integer> countEdges(int key, int nonPrimeNode) {
        if (notPrimeEdges.get(nonPrimeNode) != null) {
            for (Integer node : notPrimeEdges.get(nonPrimeNode)) {
                if (!counter.contains(node)) {
                    indirectNodesNumMap.put(key, indirectNodesNumMap.get(key) + 1);
                    counter.add(node);
                    countEdges(key, node);
                }
            }
        }
        return counter;
    }

    public boolean isPrimeNumber(int num) {
        if (num == 1) {
            return false;
        }
        if (num == 2) {
            return true;
        }
        if (num % 2 == 0) {
            return false;
        }
        for (int i = 3;  i * i <= num; i+=2) {
            if (num % i == 0) {
                return false;
            }
        }
        return true;
    }

    public static void main(String[] args) {
//        int[][] edges = new int[][]{new int[]{1, 2}, new int[]{1, 3}, new int[]{2, 4}, new int[]{2, 5}};
        int[][] edges = new int[][]{new int[]{1, 2}, new int[]{4, 1}, new int[]{3, 4}};
        CountPaths main = new CountPaths();
//        System.out.println(main.countPaths(5, edges));
        System.out.println(main.countPaths(4, edges));
    }
}

性能

勉强通过。有时间再回来看看题解吧。