2944.购买水果需要的最少金币数

目标

给你一个 下标从 1 开始的 整数数组 prices ,其中 prices[i] 表示你购买第 i 个水果需要花费的金币数目。

水果超市有如下促销活动:

  • 如果你花费 prices[i] 购买了下标为 i 的水果,那么你可以免费获得下标范围在 [i + 1, i + i + 1] 的水果。

注意 ,即使你 可以 免费获得水果 j ,你仍然可以花费 prices[j] 个金币去购买它以获得它的奖励。

请你返回获得所有水果所需要的 最少 金币数。

示例 1:

输入:prices = [3,1,2]
输出:4
解释:
用 prices[0] = 3 个金币购买第 1 个水果,你可以免费获得第 2 个水果。
用 prices[1] = 1 个金币购买第 2 个水果,你可以免费获得第 3 个水果。
免费获得第 3 个水果。
请注意,即使您可以免费获得第 2 个水果作为购买第 1 个水果的奖励,但您购买它是为了获得其奖励,这是更优化的。

示例 2:

输入:prices = [1,10,1,1]
输出:2
解释:
用 prices[0] = 1 个金币购买第 1 个水果,你可以免费获得第 2 个水果。
免费获得第 2 个水果。
用 prices[2] = 1 个金币购买第 3 个水果,你可以免费获得第 4 个水果。
免费获得第 4 个水果。

示例 3:

输入:prices = [26,18,6,12,49,7,45,45]
输出:39
解释:
用 prices[0] = 26 个金币购买第 1 个水果,你可以免费获得第 2 个水果。
免费获得第 2 个水果。
用 prices[2] = 6 个金币购买第 3 个水果,你可以免费获得第 4,5,6(接下来的三个)水果。
免费获得第 4 个水果。
免费获得第 5 个水果。
用 prices[5] = 7 个金币购买第 6 个水果,你可以免费获得第 7 和 第 8 个水果。
免费获得第 7 个水果。
免费获得第 8 个水果。
请注意,即使您可以免费获得第 6 个水果作为购买第 3 个水果的奖励,但您购买它是为了获得其奖励,这是更优化的。

说明:

1 <= prices.length <= 1000
1 <= prices[i] <= 10^5

思路

有 n 个水果,其价格由 prices 表示,当我们以 prices[i] 枚金币购买了第 i + 1 个苹果时,我们可以免费获得下标 [i + 1, i + i + 1]所有 个苹果(当然也可以购买以获得后面的奖励),求获得全部苹果所需的最少硬币。

最直接的想法是记忆化搜索。

代码


/**
 * @date 2025-01-24 9:07
 */
public class MinimumCoins2944 {

    public int minimumCoins(int[] prices) {
        int[] mem = new int[2 * prices.length + 3];
        Arrays.fill(mem, Integer.MAX_VALUE);
        return dfs(0, prices, mem, 0);
    }

    public int dfs(int index, int[] prices, int[] mem, int cost) {
        int n = prices.length;
        if (index >= n) {
            return cost;
        }
        int res = cost + prices[index];
        int next = index * 2 + 2;
        if (mem[next] == Integer.MAX_VALUE) {
            mem[next] = dfs(next, prices, mem, 0);
        }
        int remainder = mem[next];
        if (remainder == 0) {
            return res;
        }
        for (int i = index + 1; i < n && i <= index * 2 + 1; i++) {
            if (mem[i] == Integer.MAX_VALUE) {
                mem[i] = dfs(i, prices, mem, 0);
            }
            remainder = Math.min(mem[i], remainder);
        }
        return res + remainder;
    }

}

性能

2398.预算内的最多机器人数目

目标

你有 n 个机器人,给你两个下标从 0 开始的整数数组 chargeTimes 和 runningCosts ,两者长度都为 n 。第 i 个机器人充电时间为 chargeTimes[i] 单位时间,花费 runningCosts[i] 单位时间运行。再给你一个整数 budget 。

运行 k 个机器人 总开销 是 max(chargeTimes) + k * sum(runningCosts) ,其中 max(chargeTimes) 是这 k 个机器人中最大充电时间,sum(runningCosts) 是这 k 个机器人的运行时间之和。

请你返回在 不超过 budget 的前提下,你 最多 可以 连续 运行的机器人数目为多少。

示例 1:

输入:chargeTimes = [3,6,1,3,4], runningCosts = [2,1,3,4,5], budget = 25
输出:3
解释:
可以在 budget 以内运行所有单个机器人或者连续运行 2 个机器人。
选择前 3 个机器人,可以得到答案最大值 3 。总开销是 max(3,6,1) + 3 * sum(2,1,3) = 6 + 3 * 6 = 24 ,小于 25 。
可以看出无法在 budget 以内连续运行超过 3 个机器人,所以我们返回 3 。

示例 2:

输入:chargeTimes = [11,12,19], runningCosts = [10,8,7], budget = 19
输出:0
解释:即使运行任何一个单个机器人,还是会超出 budget,所以我们返回 0 。

说明:

  • chargeTimes.length == runningCosts.length == n
  • 1 <= n <= 5 * 10^4
  • 1 <= chargeTimes[i], runningCosts[i] <= 10^5
  • 1 <= budget <= 10^15

思路

选择连续的 k 个机器人,使开销不超过预算 budget。其中机器人的开销等于其中 所选机器人的最长的充电时间 + k * 所选k个机器人花费之和

直接的想法是二分查找 k,然后使用滑动窗口记录最小的开销 min,如果 min < budget 增大 k,否则减小 k。时间复杂度为 O(nlogn)。

核心点在于滑动窗口的时候 max(chargeTimes) 如何更新。今天又解锁了新词条:单调队列

// todo

代码

性能