2218.从栈中取出K个硬币的最大面值和

目标

一张桌子上总共有 n 个硬币 栈 。每个栈有 正整数 个带面值的硬币。

每一次操作中,你可以从任意一个栈的 顶部 取出 1 个硬币,从栈中移除它,并放入你的钱包里。

给你一个列表 piles ,其中 piles[i] 是一个整数数组,分别表示第 i 个栈里 从顶到底 的硬币面值。同时给你一个正整数 k ,请你返回在 恰好 进行 k 次操作的前提下,你钱包里硬币面值之和 最大为多少 。

示例 1:

输入:piles = [[1,100,3],[7,8,9]], k = 2
输出:101
解释:
上图展示了几种选择 k 个硬币的不同方法。
我们可以得到的最大面值为 101 。

示例 2:

输入:piles = [[100],[100],[100],[100],[100],[100],[1,1,1,1,1,1,700]], k = 7
输出:706
解释:
如果我们所有硬币都从最后一个栈中取,可以得到最大面值和。

说明:

  • n == piles.length
  • 1 <= n <= 1000
  • 1 <= piles[i][j] <= 10^5
  • 1 <= k <= sum(piles[i].length) <= 2000

思路

有 n 个栈,栈中有 piles[i].length 个硬币,每次操作可以从任意栈顶取一个硬币,求 k 次操作取得的硬币和的最大值。

定义 dp[i][j] 表示 从前 i + 1 个栈中最多取 j 个 所能得到的最大值,与 0 - 1 背包不同的是我们需要枚举从当前栈取 1 至 x 枚硬币的最大值,状态转移方程为 dp[i][j] = Math.max(dp[i][j], Math.max(dp[i - 1][j], dp[i - 1][j - x] + prefix[i][x])),外层 max 求的是当前栈每种取法的最大值,第二个参数的 max 求的是当前栈 不取 或者 取 x 枚硬币对应的最大值。由于是从栈顶取,我们使用前缀和 prefix 记录每个栈从栈顶到底的硬币和。

代码


/**
 * @date 2025-01-21 13:46
 */
public class MaxValueOfCoins2218 {

    public int maxValueOfCoins(List<List<Integer>> piles, int k) {
        int n = piles.size();
        int[][] prefix = new int[n][];
        // 计算前缀和
        for (int i = 0; i < n; i++) {
            List<Integer> pile = piles.get(i);
            prefix[i] = new int[pile.size() + 1];
            for (int j = 1; j <= pile.size(); j++) {
                prefix[i][j] = prefix[i][j - 1] + pile.get(j - 1);
            }
        }
        // 定义dp[i][j] 表示 从前 i + 1 个栈中最多取 j 个 所能得到的最大值
        int[][] dp = new int[n][k + 1];
        // 初始化,从第一个栈最多取 k 个
        for (int j = 1; j <= k; j++) {
            int length = piles.get(0).size();
            if (j <= length) {
                dp[0][j] = prefix[0][j];
            } else {
                dp[0][j] = dp[0][length];
            }
        }
        for (int i = 1; i < n; i++) {
            // 枚举右边界
            int length = piles.get(i).size();
            for (int j = 1; j <= k; j++) {
                // j 表示从前 i + 1 个栈中总共取 j 个
                for (int x = 1; x <= length && j >= x; x++) {
                    // 表示从当前栈中取 x 个
                    dp[i][j] = Math.max(dp[i][j], Math.max(dp[i - 1][j], dp[i - 1][j - x] + prefix[i][x]));
                }
            }
        }
        return dp[n - 1][k];
    }

}

性能

2266.统计打字方案数

目标

Alice 在给 Bob 用手机打字。数字到字母的 对应 如下图所示。

为了 打出 一个字母,Alice 需要 按 对应字母 i 次,i 是该字母在这个按键上所处的位置。

  • 比方说,为了按出字母 's' ,Alice 需要按 '7' 四次。类似的, Alice 需要按 '5' 两次得到字母 'k' 。
  • 注意,数字 '0' 和 '1' 不映射到任何字母,所以 Alice 不 使用它们。

但是,由于传输的错误,Bob 没有收到 Alice 打字的字母信息,反而收到了 按键的字符串信息 。

  • 比方说,Alice 发出的信息为 "bob" ,Bob 将收到字符串 "2266622" 。

给你一个字符串 pressedKeys ,表示 Bob 收到的字符串,请你返回 Alice 总共可能发出多少种文字信息 。

由于答案可能很大,将它对 10^9 + 7 取余 后返回。

示例 1:

输入:pressedKeys = "22233"
输出:8
解释:
Alice 可能发出的文字信息包括:
"aaadd", "abdd", "badd", "cdd", "aaae", "abe", "bae" 和 "ce" 。
由于总共有 8 种可能的信息,所以我们返回 8 。

示例 2:

输入:pressedKeys = "222222222222222222222222222222222222"
输出:82876089
解释:
总共有 2082876103 种 Alice 可能发出的文字信息。
由于我们需要将答案对 109 + 7 取余,所以我们返回 2082876103 % (109 + 7) = 82876089 。

说明:

  • 1 <= pressedKeys.length <= 10^5
  • pressedKeys 只包含数字 '2' 到 '9' 。

思路

Alice 给 Bob 发短信,由于种种原因,Bob 接收到的是 Alice 的按键的数字字符串,求这些按键信息能够表示多少文字信息。由于一个数字按键可以表示多个字母,那么连续的相同数字就产生了多种可能的文字信息。2 3 4 5 6 8 可以表示 3 个字母,7 9 可以表示 4 个字母。

问题变成求解相同的连续数字可以表示的字母组合个数,或者将 n 个球放入盒子,每个盒子最多放 k 个球,至少放 1 个球,有多少种放法。

定义 dp[i] 表示将 i 个球放入盒子的方法,考虑最后一个盒子我们可以放 1 ~ k 个球,那么当 k = 3k = 4 时:

  • dp3[i] = ((dp3[i - 1] + dp3[i - 2]) % MOD + dp3[i - 3] % MOD) % MOD;
  • dp4[i] = ((dp4[i - 1] + dp4[i - 2]) % MOD + (dp4[i - 3] + dp4[i - 4]) % MOD) % MOD;

遍历字符串,找到连续的字符个数,使用乘法原理计算即可。

代码


/**
 * @date 2025-01-19 2:21
 */
public class CountTexts2266 {

    static int[] dp3 = new int[100001];
    static int[] dp4 = new int[100001];
    static int MOD = 1000000007;
    static Map<Character, int[]> map = new HashMap<>();

    static {
        dp3[1] = 1;
        dp3[2] = 2;
        dp3[3] = 4;
        dp3[4] = 7;
        dp4[1] = 1;
        dp4[2] = 2;
        dp4[3] = 4;
        dp4[4] = 8;
        for (int i = 5; i < 100001; i++) {
            dp3[i] = ((dp3[i - 1] + dp3[i - 2]) % MOD + dp3[i - 3] % MOD) % MOD;
            dp4[i] = ((dp4[i - 1] + dp4[i - 2]) % MOD + (dp4[i - 3] + dp4[i - 4]) % MOD) % MOD;
        }
        map.put('2', dp3);
        map.put('3', dp3);
        map.put('4', dp3);
        map.put('5', dp3);
        map.put('6', dp3);
        map.put('8', dp3);
        map.put('7', dp4);
        map.put('9', dp4);
    }

    public int countTexts(String pressedKeys) {
        char[] chars = pressedKeys.toCharArray();
        char prev = chars[0];
        int cnt = 1;
        long res = 1;
        for (int i = 1; i < chars.length; i++) {
            if (prev == chars[i]) {
                cnt++;
            } else {
                res = res * map.get(prev)[cnt] % MOD;
                prev = chars[i];
                cnt = 1;
            }
        }
        if (cnt > 1){
            res = res * map.get(prev)[cnt] % MOD;
        }
        return (int) res;
    }

}

性能

3287.求出数组中最大序列值

目标

给你一个整数数组 nums 和一个 正 整数 k 。

定义长度为 2 * x 的序列 seq 的 值 为:

  • (seq[0] OR seq[1] OR ... OR seq[x - 1]) XOR (seq[x] OR seq[x + 1] OR ... OR seq[2 * x - 1]).

请你求出 nums 中所有长度为 2 * k 的 子序列 的 最大值 。

示例 1:

输入:nums = [2,6,7], k = 1
输出:5
解释:
子序列 [2, 7] 的值最大,为 2 XOR 7 = 5 。

示例 2:

输入:nums = [4,2,5,6,7], k = 2
输出:2
解释:
子序列 [4, 5, 6, 7] 的值最大,为 (4 OR 5) XOR (6 OR 7) = 2 。

说明:

  • 2 <= nums.length <= 400
  • 1 <= nums[i] < 27
  • 1 <= k <= nums.length / 2

思路

// todo

代码

性能

1387.将整数按权重排序

目标

我们将整数 x 的 权重 定义为按照下述规则将 x 变成 1 所需要的步数:

  • 如果 x 是偶数,那么 x = x / 2
  • 如果 x 是奇数,那么 x = 3 * x + 1

比方说,x=3 的权重为 7 。因为 3 需要 7 步变成 1 (3 --> 10 --> 5 --> 16 --> 8 --> 4 --> 2 --> 1)。

给你三个整数 lo, hi 和 k 。你的任务是将区间 [lo, hi] 之间的整数按照它们的权重 升序排序 ,如果大于等于 2 个整数有 相同 的权重,那么按照数字自身的数值 升序排序 。

请你返回区间 [lo, hi] 之间的整数按权重排序后的第 k 个数。

注意,题目保证对于任意整数 x (lo <= x <= hi) ,它变成 1 所需要的步数是一个 32 位有符号整数。

示例 1:

输入:lo = 12, hi = 15, k = 2
输出:13
解释:12 的权重为 9(12 --> 6 --> 3 --> 10 --> 5 --> 16 --> 8 --> 4 --> 2 --> 1)
13 的权重为 9
14 的权重为 17
15 的权重为 17
区间内的数按权重排序以后的结果为 [12,13,14,15] 。对于 k = 2 ,答案是第二个整数也就是 13 。
注意,12 和 13 有相同的权重,所以我们按照它们本身升序排序。14 和 15 同理。

示例 2:

输入:lo = 7, hi = 11, k = 4
输出:7
解释:区间内整数 [7, 8, 9, 10, 11] 对应的权重为 [16, 3, 19, 6, 14] 。
按权重排序后得到的结果为 [8, 10, 11, 7, 9] 。
排序后数组中第 4 个数字为 7 。

说明:

1 <= lo <= hi <= 1000
1 <= k <= hi - lo + 1

思路

定义整数 x 的权重为 将其变为 1 的操作次数,根据整数的奇偶性,可以执行不同的操作:

  • x 为偶数,x -> x / 2
  • x 为奇数,x -> 3 * x + 1

返回区间 [lo, hi] 之间的整数按权重排序后的第 k 个数。

根据题意模拟计算出每个数字的权重,将它和数字一起保存起来,然后按照权重、数值排序即可。

可以预处理 1 ~ 1000 内的所有权重,保存中间结果减少重复计算。

看到题目时我们都会有这样的疑问,如何证明 x 最终都会回到 1?有网友提到题目中的操作与考拉兹猜想(Collatz conjecture)的操作一样,由于操作过程与冰雹的形成和下落过程相似,因此也叫冰雹猜想。

代码


/**
 * @date 2024-12-22 16:20
 */
public class GetKth1387 {

    public int getKth(int lo, int hi, int k) {
        int n = hi - lo + 1;
        int[][] w = new int[n][2];
        int c = 0;
        for (int i = lo; i <= hi; i++) {
            w[c++] = new int[]{getWeight(i), i};
        }
        Arrays.sort(w, (a, b) -> {
            int compare = a[0] - b[0];
            if (compare != 0) {
                return compare;
            }
            return a[1] - b[1];
        });
        return w[k - 1][1];
    }

    public int getWeight(int x) {
        int cnt = 0;
        while (x > 1) {
            if (x % 2 == 0) {
                x >>= 1;
            } else {
                x = 3 * x + 1;
            }
            cnt++;
        }
        return cnt;
    }
}

性能

3291.形成目标字符串需要的最少字符串数I

目标

给你一个字符串数组 words 和一个字符串 target。

如果字符串 x 是 words 中 任意 字符串的 前缀,则认为 x 是一个 有效 字符串。

现计划通过 连接 有效字符串形成 target ,请你计算并返回需要连接的 最少 字符串数量。如果无法通过这种方式形成 target,则返回 -1。

示例 1:

输入: words = ["abc","aaaaa","bcdef"], target = "aabcdabc"
输出: 3
解释:
target 字符串可以通过连接以下有效字符串形成:
words[1] 的长度为 2 的前缀,即 "aa"。
words[2] 的长度为 3 的前缀,即 "bcd"。
words[0] 的长度为 3 的前缀,即 "abc"。

示例 2:

输入: words = ["abababab","ab"], target = "ababaababa"
输出: 2
解释:
target 字符串可以通过连接以下有效字符串形成:
words[0] 的长度为 5 的前缀,即 "ababa"。
words[0] 的长度为 5 的前缀,即 "ababa"。

示例 3:

输入: words = ["abcdef"], target = "xyz"
输出: -1

说明:

  • 1 <= words.length <= 100
  • 1 <= words[i].length <= 5 * 10^3
  • 输入确保 sum(words[i].length) <= 10^5。
  • words[i] 只包含小写英文字母。
  • 1 <= target.length <= 5 * 10^3
  • target 只包含小写英文字母。

思路

有一个字符串数组 words 和目标字符串 target,请你使用最少的字符串前缀组成 target,返回需要的字符串数量,如果无法组成 target 返回 -1

注意前缀是允许重复使用的,状态个数为 target.length ^ 2,深度为 100,直接使用记忆化搜索会超时。

使用字典树加动态规划可以勉强通过,但是明天的通过不了。

//todo KMP 算法 Z 函数 / 字符串哈希+二分 / AC 自动机

代码


/**
 * @date 2024-12-17 8:59
 */
public class MinValidStrings3291 {

    static public class Trie {
        public boolean isLeaf;
        public Trie[] children;

        public Trie() {
            this.children = new Trie[26];
        }

        public Trie build(String[] dict) {
            Trie root = this;
            for (String word : dict) {
                root = this;
                char[] chars = word.toCharArray();
                for (int i = 0; i < chars.length; i++) {
                    int c = chars[i] - 'a';
                    if (root.children[c] == null) {
                        root.children[c] = new Trie();
                    }
                    root = root.children[c];
                }
                root.isLeaf = true;
            }
            return root;
        }

        public int exists(char[] target, int start) {
            int n = target.length;
            int length = 0;
            Trie root = this;
            int c = target[start] - 'a';
            while (root.children[c] != null) {
                root = root.children[c];
                length++;
                start++;
                if (start == n) {
                    break;
                }
                c = target[start] - 'a';
            }
            return length;
        }

    }

    public int minValidStrings_v1(String[] words, String target) {
        Trie root = new Trie();
        root.build(words);
        char[] chars = target.toCharArray();
        int n = chars.length;
        int[] dp = new int[n];
        Arrays.fill(dp, Integer.MAX_VALUE);
        int length = root.exists(chars, 0);
        for (int i = 0; i < length; i++) {
            dp[i] = 1;
        }

        for (int i = 1; i < n; i++) {
            if (dp[i - 1] == Integer.MAX_VALUE) {
                return -1;
            }
            length = root.exists(chars, i);
            for (int j = i; j < i + length; j++) {
                dp[j] = Math.min(dp[j], dp[i - 1] + 1);
            }
        }

        return dp[n - 1] == Integer.MAX_VALUE ? -1 : dp[n - 1];
    }

}

性能

935.骑士拨号器

目标

象棋骑士有一个独特的移动方式,它可以垂直移动两个方格,水平移动一个方格,或者水平移动两个方格,垂直移动一个方格(两者都形成一个 L 的形状)。

象棋骑士可能的移动方式如下图所示:

我们有一个象棋骑士和一个电话垫,如下所示,骑士只能站在一个数字单元格上(即蓝色单元格)。

给定一个整数 n,返回我们可以拨多少个长度为 n 的不同电话号码。

你可以将骑士放置在任何数字单元格上,然后你应该执行 n - 1 次移动来获得长度为 n 的号码。所有的跳跃应该是有效的骑士跳跃。

因为答案可能很大,所以输出答案模 10^9 + 7.

示例 1:

输入:n = 1
输出:10
解释:我们需要拨一个长度为1的数字,所以把骑士放在10个单元格中的任何一个数字单元格上都能满足条件。

示例 2:

输入:n = 2
输出:20
解释:我们可以拨打的所有有效号码为[04, 06, 16, 18, 27, 29, 34, 38, 40, 43, 49, 60, 61, 67, 72, 76, 81, 83, 92, 94]

示例 3:

输入:n = 3131
输出:136006598
解释:注意取模

说明:

  • 1 <= n <= 5000

思路

有一个电话键盘,布局如下:

1  2  3
4  5  6
7  8  9
*  0  #

开始时,将一个骑士棋子放在数字键上,然后按照国际象棋骑士的走法(类似于中国象棋里的马)走 n - 1 步,问能够组成多少种长度为 n 的不同号码(不能走到 *#)。

这道题与 688.骑士在棋盘上的概率 类似,只不过棋盘更小,状态转移是确定的。

定义 dp[k][i] 表示以 i 结尾长度为 k 的号码组合数。初始时,dp[1][i] 均为 1。状态转移方程,针对不同的数字有所不同,例如 dp[k][1] = dp[k - 1][8] + dp[k - 1][6]dp[k][4] = dp[k - 1][3] + dp[k - 1][9] + dp[k - 1][0]等等。

1 - 6 - 7
|   |   |
8   0   2
|   |   |
3 - 4 - 9

仔细分析可以得到上面的状态转化图,1 3 7 9 的结果是完全相同的,同理 2 8 也可以认为是一个状态,4 6 是一个状态,0 是一个状态。定义以上 4 个状态为 a b c d,那么最终结果可以表示为 4 * dp[n][a] + 2 * dp[n][b] + 2 * dp[n][c] + dp[n][d],状态转移方程为:

  • dp[k][a] = dp[k - 1][b] + dp[k - 1][c]
  • dp[k][b] = 2 * dp[k - 1][a]
  • dp[k][c] = 2 * dp[k - 1][a] + dp[k - 1][d]
  • dp[k][d] = 2 * dp[k - 1][c]

注意 k 的初值为 2k == 1 是特殊情况,骑士可以在数字 5,但是无法继续移动。dp[2][a] = 2, dp[2][b] = 2, dp[2][c] = 3, dp[2][d] = 2

如果写成矩阵的形式 列向量 dp[k] 等于 A · dp[k - 1],其中矩阵 A 为:

0 1 1 0
2 0 0 0
2 0 0 1
0 0 2 0

因此 dp[n] = A^(n - 1) · dp[1],其中 dp[1] = [1, 1, 1, 1]。我们可以使用矩阵的快速幂求解。

代码


/**
 * @date 2024-12-10 9:39
 */
public class KnightDialer935 {

    public static int mod = 1000000007;

    public int knightDialer_v3(int n) {
        if (n == 1) {
            return 10;
        }
        long[][] A = new long[][]{
                {0, 1, 1, 0},
                {2, 0, 0, 0},
                {2, 0, 0, 1},
                {0, 0, 2, 0},
        };
        A = pow(A, n - 1);
        long[] res = new long[4];
        for (int i = 0; i < 4; i++) {
            for (int j = 0; j < 4; j++) {
                res[i] += A[i][j];
            }
        }
        return (int) ((4 * res[0] + 2 * res[1] + 2 * res[2] + res[3]) % mod);
    }

    public long[][] pow(long[][] A, int exponent) {
        long[][] res = new long[][]{
                {1, 0, 0, 0},
                {0, 1, 0, 0},
                {0, 0, 1, 0},
                {0, 0, 0, 1},
        };
        while (exponent > 0) {
            if ((exponent & 1) == 1) {
                res = mul(A, res);
            }
            A = mul(A, A);
            exponent >>= 1;
        }
        return res;
    }

    public long[][] mul(long[][] A1, long[][] A2) {
        long[][] res = new long[4][4];
        for (int i = 0; i < 4; i++) {
            for (int k = 0; k < 4; k++) {
                if (A1[i][k] == 0) {
                    continue;
                }
                for (int j = 0; j < 4; j++) {
                    res[i][j] = (res[i][j] + A1[i][k] * A2[k][j]) % mod;
                }
            }
        }
        return res;
    }

    public static long[][] dp;
    public static int MAX = 5001;

    static {
        dp = new long[MAX][4];
        dp[2][0] = 2;
        dp[2][1] = 2;
        dp[2][2] = 3;
        dp[2][3] = 2;
        for (int k = 3; k < MAX; k++) {
            dp[k][0] = (dp[k - 1][1] + dp[k - 1][2]) % mod;
            dp[k][1] = (2 * dp[k - 1][0]) % mod;
            dp[k][2] = (2 * dp[k - 1][0] + dp[k - 1][3]) % mod;
            dp[k][3] = (2 * dp[k - 1][2]) % mod;
        }
    }

    public int knightDialer_v2(int n) {
        if (n == 1) {
            return 10;
        }
        return (int)((4 * dp[n][0] + 2 * dp[n][1] + 2 * dp[n][2] + dp[n][3]) % mod);
    }

    public int knightDialer_v1(int n) {
        long[][] dp = new long[n + 1][10];
        dp[1] = new long[]{1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
        int MOD = 1000000007;
        int res = 0;
        for (int k = 2; k <= n; k++) {
            dp[k][0] = (dp[k - 1][4] + dp[k - 1][6]) % MOD;
            dp[k][1] = (dp[k - 1][6] + dp[k - 1][8]) % MOD;
            dp[k][2] = (dp[k - 1][7] + dp[k - 1][9]) % MOD;
            dp[k][3] = (dp[k - 1][4] + dp[k - 1][8]) % MOD;
            dp[k][4] = (dp[k - 1][3] + dp[k - 1][9] + dp[k - 1][0]) % MOD;
            dp[k][6] = (dp[k - 1][1] + dp[k - 1][7] + dp[k - 1][0]) % MOD;
            dp[k][7] = (dp[k - 1][2] + dp[k - 1][6]) % MOD;
            dp[k][8] = (dp[k - 1][1] + dp[k - 1][3]) % MOD;
            dp[k][9] = (dp[k - 1][2] + dp[k - 1][4]) % MOD;
        }
        for (int i = 0; i < 10; i++) {
            res = (int) (res + dp[n][i]) % MOD;
        }
        return res;
    }

}

性能

688.骑士在棋盘上的概率

目标

在一个 n x n 的国际象棋棋盘上,一个骑士从单元格 (row, column) 开始,并尝试进行 k 次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0) ,右下单元格是 (n - 1, n - 1) 。

象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。

每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。

骑士继续移动,直到它走了 k 步或离开了棋盘。

返回 骑士在棋盘停止移动后仍留在棋盘上的概率 。

示例 1:

输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。

示例 2:

输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000

说明:

  • 1 <= n <= 25
  • 0 <= k <= 100
  • 0 <= row, column <= n - 1

思路

n x n 棋盘上的 (row, column) 位置上有一个骑士(坐标从 0 开始),求它朝 8 个方向任意走 k 次还停留在棋盘上的概率是多少。所谓的 8 个方向类似中国象棋中的马走 ,不过没有蹩马腿的限制。

定义 dp[i][j][k] 表示当前在 (i, j)k 步后最终在棋盘上的概率。初始 dp[i][j][0] = 1dp[i][j][k] = Σdp[.][.][k - 1] / 8,最终的结果为 dp[row][column][k]

代码


/**
 * @date 2024-12-07 20:48
 */
public class KnightProbability688 {

    public double knightProbability(int n, int k, int row, int column) {
        int[][] direction = new int[][]{{-1, -2}, {-2, -1}, {-1, 2}, {-2, 1}, {1, 2}, {2, 1}, {1, -2}, {2, -1}};
        double[][][] dp = new double[n][n][k + 1];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                dp[i][j][0] = 1.0;
            }
        }
        for (int step = 1; step <= k; step++) {
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    for (int d = 0; d < 8; d++) {
                        int dx = direction[d][0];
                        int dy = direction[d][1];
                        int x = i + dx;
                        int y = j + dy;
                        if (x >= 0 && x < n && y >= 0 && y < n) {
                            dp[i][j][step] += dp[x][y][step - 1];
                        }
                    }
                    dp[i][j][step] /= 8;
                }
            }
        }
        return dp[row][column][k];
    }

}

性能

3251.单调数组对的数目II

目标

给你一个长度为 n 的 正 整数数组 nums 。

如果两个 非负 整数数组 (arr1, arr2) 满足以下条件,我们称它们是 单调 数组对:

  • 两个数组的长度都是 n 。
  • arr1 是单调 非递减 的,换句话说 arr1[0] <= arr1[1] <= ... <= arr1[n - 1] 。
  • arr2 是单调 非递增 的,换句话说 arr2[0] >= arr2[1] >= ... >= arr2[n - 1] 。
  • 对于所有的 0 <= i <= n - 1 都有 arr1[i] + arr2[i] == nums[i] 。

请你返回所有 单调 数组对的数目。

由于答案可能很大,请你将它对 109 + 7 取余 后返回。

示例 1:

输入:nums = [2,3,2]
输出:4
解释:
单调数组对包括:
([0, 1, 1], [2, 2, 1])
([0, 1, 2], [2, 2, 0])
([0, 2, 2], [2, 1, 0])
([1, 2, 2], [1, 1, 0])

示例 2:

输入:nums = [5,5,5,5]
输出:126

说明:

  • 1 <= n == nums.length <= 2000
  • 1 <= nums[i] <= 1000

思路

有一个长度为 n 正整数数组 nums,可以将其拆成两个数组 arr1 arr2,使之满足 arr1[i] + arr2[i] == nums[i]。问 有多少种拆分方法使得 arr1 非递减 且 arr2 非递增。

与昨天的 3250.单调数组对的数目I 相比,nums[i] 的最大值从 50 变成了 1000。时间复杂度大概为 O(n*m^2),mnums[i] 的最大值,如果还沿用昨天的解法就会超时。

先将昨天的题目改写为动态规划,定义 dp[i][j] 表示最后一个元素为 j,长度为 i + 1 的满足条件的 arr1 个数。由于 arr1 是非递减的,如果最后一个元素为 arr1[i] = j 那么倒数第二个元素arr1[i - 1] <= j。同时我们还要考虑到 arr2 非递增,即 arr2[i - 1] >= arr2[i]nums[i - 1] - arr1[i - 1] >= nums[i] - arr1[i]arr1[i - 1] <= nums[i - 1] - nums[i] + arr1[i]。综上,arr1[i - 1] <= Math.min(j, nums[i - 1] - nums[i] + j)

经过上面的分析,dp[i][j] = Σdp[i - 1][k],其中 k ∈ [0, Math.min(j, nums[i - 1] - nums[i] + j)]。这样写会超时,针对每个 j,我们会进行多次重复的计算。

d = nums[i - 1] - nums[i],当 d >= 0 时,上界为 j,否则上界为 j + d

考虑 nums[i - 1] < nums[i],即 d < 0

  • arr1[i - 1] = j 时,令arr2[i - 1] = nums[i - 1] - j = a
  • arr1[i] = j 时,arr2[i] = nums[i] - arr1[i] = nums[i - 1] - d - j = a - dd < 0

也就是说,当 arr1[i] 的取值与上一层一样时,arr2[i] 比上一层的值大了 |d|。为了使第 iarr2 非递增,那么 arr1 的取值只能从 |d| 开始。

它们之间的约束关系是这样的,当 nums[i] 变大,arr1i 层取 j 时,arr2 的第 i 层比上一层增大了 |d|,这时我们必须舍弃 [0, |d|) 的取值,因为它必定大于上一层 arr2 的最大值。然后考虑第 i 层的 arr1[|d|, nums[i]] 的情况,由于第 i 层的 arr2 相比第 i - 1 层增大了 |d|,因此需要减小第 i - 1 层的 arr1,使第 i - 1 层的 arr2 增大。所以第 i 层的 j 对应第 i - 1 层的 j - |d|

dp[i][j] 的取值类似前缀和,只不过有约束条件,并不是所有值都合法。考虑简单的情况 nums[0] == nums[1] && i == 1,

  • 当 j == 0 时,dp[1][0] = dp[0][0] = 1
  • 当 j == 1 时,上一层(i == 0) arr1 可以取 0、1,dp[1][1] = dp[1][0] + dp[0][1] = 2
  • 当 j == 2 时,上一层(i == 0) arr1 可以取 0、1、2,dp[1][2] = dp[1][1] + dp[0][2] = 3

因此我们有 dp[i][j] = (dp[i][j - 1] + dp[i - 1][j - d])

代码


/**
 * @date 2024-11-29 9:39
 */
public class CountOfPairs3251 {

    public static int MOD = 1000000007;

    public int countOfPairs(int[] nums) {
        int res = 0;
        int n = nums.length;
        int[][] dp = new int[n][1001];
        for (int i = 0; i <= nums[0]; i++) {
            dp[0][i] = 1;
        }
        for (int i = 1; i < n; i++) {
            int d = Math.max(nums[i] - nums[i - 1], 0);
            for (int j = d; j <= nums[i]; j++) {
                if (j == 0) {
                    dp[i][j] = dp[i - 1][0] % MOD;
                } else {
                    dp[i][j] = (dp[i][j - 1] + dp[i - 1][j - d]) % MOD;
                }
            }
        }
        for (int i : dp[n - 1]) {
            res = (res + i) % MOD;
        }
        return res;
    }

}

性能

3250.单调数组对的数目I

目标

给你一个长度为 n 的 正 整数数组 nums 。

如果两个 非负 整数数组 (arr1, arr2) 满足以下条件,我们称它们是 单调 数组对:

  • 两个数组的长度都是 n 。
  • arr1 是单调 非递减 的,换句话说 arr1[0] <= arr1[1] <= ... <= arr1[n - 1] 。
  • arr2 是单调 非递增 的,换句话说 arr2[0] >= arr2[1] >= ... >= arr2[n - 1] 。
  • 对于所有的 0 <= i <= n - 1 都有 arr1[i] + arr2[i] == nums[i] 。

请你返回所有 单调 数组对的数目。

由于答案可能很大,请你将它对 10^9 + 7 取余 后返回。

示例 1:

输入:nums = [2,3,2]
输出:4
解释:
单调数组对包括:
([0, 1, 1], [2, 2, 1])
([0, 1, 2], [2, 2, 0])
([0, 2, 2], [2, 1, 0])
([1, 2, 2], [1, 1, 0])

示例 2:

输入:nums = [5,5,5,5]
输出:126

说明:

  • 1 <= n == nums.length <= 2000
  • 1 <= nums[i] <= 50

提示:

  • Let dp[i][s] is the number of monotonic pairs of length i with the arr1[i - 1] = s.
  • If arr1[i - 1] = s, arr2[i - 1] = nums[i - 1] - s.
  • Check if the state in recurrence is valid.

思路

有一个长度为 n 的正整数数组 nums,可以将其拆成两个数组 arr1 arr2,使之满足 arr1[i] + arr2[i] == nums[i]。问 有多少种拆分方法使得 arr1 非递减 且 arr2 非递增。

显然 arr1 确定之后,arr2 也就确定了。考虑枚举 arr1,判断 arr1 是否非递减, 以及arr2 是否非递增。可以使用记忆化搜索,对于位置 iarr1arr2 需要满足下面的条件:

  • arr1[i] >= arr1[i - 1]
  • arr2[i] = nums[i] - arr1[i] <= arr2[i - 1] = nums[i - 1] - arr1[i - 1],即 arr1[i] >= nums[i] - nums[i - 1] + arr1[i - 1]

也就是 nums[i] >= arr1[i] >= Math.max(nums[i] - nums[i - 1] + arr1[i - 1], arr1[i - 1])

代码


/**
 * @date 2024-11-28 10:36
 */
public class CountOfPairs3250 {

    public static int MOD = 1000000007;

    public int countOfPairs(int[] nums) {
        int res = 0;
        int n = nums.length;
        int[][] mem = new int[n + 1][51];
        for (int[] arr : mem) {
            Arrays.fill(arr, -1);
        }
        for (int i = 0; i <= nums[0]; i++) {
            res = (res + dfs(nums, 1, i, mem)) % MOD;
        }
        return res;
    }

    public int dfs(int[] nums, int i, int prev, int[][] mem) {
        int n = nums.length;
        if (i == n) {
            return 1;
        }
        int lowerBound = Math.max(prev, nums[i] - nums[i - 1] + prev);
        int next = i + 1;
        int res = 0;
        for (int j = lowerBound; j <= nums[i]; j++) {
            if (mem[next][j] == -1) {
                mem[next][j] = dfs(nums, next, j, mem) % MOD;
            }
            res = (res + mem[next][j]) % MOD;
        }
        return res;
    }

}

性能

743.网络延迟时间

目标

有 n 个网络节点,标记为 1 到 n。

给你一个列表 times,表示信号经过 有向 边的传递时间。 times[i] = (ui, vi, wi),其中 ui 是源节点,vi 是目标节点, wi 是一个信号从源节点传递到目标节点的时间。

现在,从某个节点 K 发出一个信号。需要多久才能使所有节点都收到信号?如果不能使所有节点收到信号,返回 -1 。

示例 1:

输入:times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
输出:2

示例 2:

输入:times = [[1,2,1]], n = 2, k = 1
输出:1

示例 3:

输入:times = [[1,2,1]], n = 2, k = 2
输出:-1

说明:

  • 1 <= k <= n <= 100
  • 1 <= times.length <= 6000
  • times[i].length == 3
  • 1 <= ui, vi <= n
  • ui != vi
  • 0 <= wi <= 100
  • 所有 (ui, vi) 对都 互不相同(即,不含重复边)

思路

有一个 n 个节点的有向图 ,节点标记为 1 ~ n,求从其中某个节点 k 出发访问到所有其它节点的最短时间。

即从 k 出发求出到达所有其它节点的最短路径,然后取其中的最 值。

Floyd 算法的基本思想是动态规划。定义 dp[i][j] 表示从节点 i 到 节点 j 的最短路径,对于所有其它中间节点 m,更新 dp[i][j] = Math.min(dp[i][j], dp[i][m] + dp[m][j]),时间复杂度 O(n^3)。

如果 i -> j 有直接的通路则初始化 dp[i][j] 为路径的权值,否则为 INF

但是本题不需要其它起点的最短路径,因此可以使用 Dijkstra 算法、Bellman-Ford 算法 或者 SPFA 算法。

图的表示可以使用邻接矩阵、邻接表、前向星、链式前向星等结构。

代码


/**
 * @date 2024-11-25 9:08
 */
public class NetworkDelayTime743 {

    public int networkDelayTime(int[][] times, int n, int k) {
        int[][] dp = new int[n + 1][n + 1];
        for (int[] cost : dp) {
            Arrays.fill(cost, 20000);
        }
        for (int[] edge : times) {
            dp[edge[0]][edge[1]] = edge[2];
        }
        for (int m = 1; m <= n; m++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    if (i == j || i == m || j == m) {
                        continue;
                    }
                    dp[i][j] = Math.min(dp[i][j], dp[i][m] + dp[m][j]);
                }
            }
        }
        int res = -1;
        for (int i = 1; i <= n; i++) {
            if (i == k) {
                continue;
            }
            res = Math.max(dp[k][i], res);
        }
        return res == 20000 ? -1 : res;
    }

}

性能