1399.统计最大组的数目

目标

给你一个整数 n 。请你先求出从 1 到 n 的每个整数 10 进制表示下的数位和(每一位上的数字相加),然后把数位和相等的数字放到同一个组中。

请你统计每个组中的数字数目,并返回数字数目并列最多的组有多少个。

示例 1:

输入:n = 13
输出:4
解释:总共有 9 个组,将 1 到 13 按数位求和后这些组分别是:
[1,10],[2,11],[3,12],[4,13],[5],[6],[7],[8],[9]。总共有 4 个组拥有的数字并列最多。

示例 2:

输入:n = 2
输出:2
解释:总共有 2 个大小为 1 的组 [1],[2]。

示例 3:

输入:n = 15
输出:6

示例 4:

输入:n = 24
输出:5

说明:

  • 1 <= n <= 10^4

思路

计算 1 ~ n 十进制下的数位和,将数位和相同的分成到一组,求组中数字个数并列最多的组有多少个。

根据题意模拟即可,也可以使用数位DP。

代码


/**
 * @date 2025-04-23 0:12
 */
public class CountLargestGroup1399 {

    public int countLargestGroup(int n) {
        int length = String.valueOf(n).length();
        int[] cnt = new int[9 * length + 1];
        int maxDigitSumCnt = 0;
        int res = 0;
        for (int i = 1; i <= n; i++) {
            int num = i;
            int sum = 0;
            while (num > 0) {
                sum += num % 10;
                num /= 10;
            }
            if (maxDigitSumCnt < ++cnt[sum]) {
                maxDigitSumCnt = cnt[sum];
                res = 1;
            } else if (maxDigitSumCnt == cnt[sum]) {
                res++;
            }
        }
        return res;
    }

}

性能

2338.统计理想数组的数目

目标

给你两个整数 n 和 maxValue ,用于描述一个 理想数组 。

对于下标从 0 开始、长度为 n 的整数数组 arr ,如果满足以下条件,则认为该数组是一个 理想数组 :

  • 每个 arr[i] 都是从 1 到 maxValue 范围内的一个值,其中 0 <= i < n 。
  • 每个 arr[i] 都可以被 arr[i - 1] 整除,其中 0 < i < n 。

返回长度为 n 的 不同 理想数组的数目。由于答案可能很大,返回对 10^9 + 7 取余的结果。

示例 1:

输入:n = 2, maxValue = 5
输出:10
解释:存在以下理想数组:
- 以 1 开头的数组(5 个):[1,1]、[1,2]、[1,3]、[1,4]、[1,5]
- 以 2 开头的数组(2 个):[2,2]、[2,4]
- 以 3 开头的数组(1 个):[3,3]
- 以 4 开头的数组(1 个):[4,4]
- 以 5 开头的数组(1 个):[5,5]
共计 5 + 2 + 1 + 1 + 1 = 10 个不同理想数组。

示例 2:

输入:n = 5, maxValue = 3
输出:11
解释:存在以下理想数组:
- 以 1 开头的数组(9 个):
   - 不含其他不同值(1 个):[1,1,1,1,1] 
   - 含一个不同值 2(4 个):[1,1,1,1,2], [1,1,1,2,2], [1,1,2,2,2], [1,2,2,2,2]
   - 含一个不同值 3(4 个):[1,1,1,1,3], [1,1,1,3,3], [1,1,3,3,3], [1,3,3,3,3]
- 以 2 开头的数组(1 个):[2,2,2,2,2]
- 以 3 开头的数组(1 个):[3,3,3,3,3]
共计 9 + 1 + 1 = 11 个不同理想数组。

说明:

  • 2 <= n <= 10^4
  • 1 <= maxValue <= 10^4

思路

//todo

代码

性能

2843.统计对称整数的数目

目标

给你两个正整数 low 和 high 。

对于一个由 2 * n 位数字组成的整数 x ,如果其前 n 位数字之和与后 n 位数字之和相等,则认为这个数字是一个对称整数。

返回在 [low, high] 范围内的 对称整数的数目 。

示例 1:

输入:low = 1, high = 100
输出:9
解释:在 1 到 100 范围内共有 9 个对称整数:11、22、33、44、55、66、77、88 和 99 。

示例 2:

输入:low = 1200, high = 1230
输出:4
解释:在 1200 到 1230 范围内共有 4 个对称整数:1203、1212、1221 和 1230 。

说明:

  • 1 <= low <= high <= 10^4

思路

计算给定区间内的对称整数数目,对称整数的长度为偶数,且左边数字之和等于右边数字之和。

数据范围小可以直接暴力枚举。

代码

class Solution {
    public int countSymmetricIntegers(int low, int high) {
        int res = 0;
        for (int i = low; i <= high; i++) {
            String num = String.valueOf(i);
            int r = num.length();
            if (r % 2 == 1) {
                continue;
            }
            r--;
            int l = 0;
            int diff = 0;
            while (l < r) {
                diff += num.charAt(l++) - num.charAt(r--);
            }
            res += diff != 0 ? 0 : 1;
        }
        return res;
    }
}

性能

2999.统计强大整数的数目

目标

给你三个整数 start ,finish 和 limit 。同时给你一个下标从 0 开始的字符串 s ,表示一个 正 整数。

如果一个 正 整数 x 末尾部分是 s (换句话说,s 是 x 的 后缀),且 x 中的每个数位至多是 limit ,那么我们称 x 是 强大的 。

请你返回区间 [start..finish] 内强大整数的 总数目 。

如果一个字符串 x 是 y 中某个下标开始(包括 0 ),到下标为 y.length - 1 结束的子字符串,那么我们称 x 是 y 的一个后缀。比方说,25 是 5125 的一个后缀,但不是 512 的后缀。

示例 1:

输入:start = 1, finish = 6000, limit = 4, s = "124"
输出:5
解释:区间 [1..6000] 内的强大数字为 124 ,1124 ,2124 ,3124 和 4124 。这些整数的各个数位都 <= 4 且 "124" 是它们的后缀。注意 5124 不是强大整数,因为第一个数位 5 大于 4 。
这个区间内总共只有这 5 个强大整数。

示例 2:

输入:start = 15, finish = 215, limit = 6, s = "10"
输出:2
解释:区间 [15..215] 内的强大整数为 110 和 210 。这些整数的各个数位都 <= 6 且 "10" 是它们的后缀。
这个区间总共只有这 2 个强大整数。

示例 3:

输入:start = 1000, finish = 2000, limit = 4, s = "3000"
输出:0
解释:区间 [1000..2000] 内的整数都小于 3000 ,所以 "3000" 不可能是这个区间内任何整数的后缀。

说明:

  • 1 <= start <= finish <= 10^15
  • 1 <= limit <= 9
  • 1 <= s.length <= floor(log10(finish)) + 1
  • s 数位中每个数字都小于等于 limit 。
  • s 不包含任何前导 0 。

思路

返回指定区间 [start, finish] 内,后缀为 s 且每个数字不超过 limit 的数字个数。

数位dp,需要特殊处理后缀,比如 s = 10,start = 101, finish = 521 还剩两位时,01 < 10, 21 > 10 都不能计数。

代码


/**
 * @date 2025-04-10 20:19
 */
public class NumberOfPowerfulInt2999 {

    public long numberOfPowerfulInt(long start, long finish, int limit, String s) {
        long suffix = Long.parseLong(s);
        if (finish < suffix) {
            return 0L;
        }
        int[] high = Long.toString(finish).chars().map(x -> x - '0').toArray();
        int hl = high.length;
        long[] mem = new long[hl];
        int[] low = new int[hl--];
        long tmp = start;
        while (tmp > 0) {
            low[hl--] = (int) (tmp % 10);
            tmp /= 10;
        }
        Arrays.fill(mem, -1L);
        return dfs(0, low, high, true, true, mem, limit, s);
    }

    public long dfs(int index, int[] low, int[] high, boolean isLowLimit, boolean isHighLimit, long[] mem, int limit, String s) {
        if (index == high.length - s.length()) {
            boolean unaviable = false;
            if (isHighLimit) {
                StringBuilder hr = new StringBuilder();
                int tmp = index;
                while (tmp < high.length) {
                    hr.append(high[tmp++]);
                }
                unaviable = Long.parseLong(hr.toString()) < Long.parseLong(s);
            }
            if (isLowLimit) {
                StringBuilder lr = new StringBuilder();
                while (index < high.length) {
                    lr.append(low[index++]);
                }
                unaviable = unaviable || Long.parseLong(lr.toString()) > Long.parseLong(s);
            }
            return unaviable ? 0 : 1;
        }
        if (!isLowLimit && !isHighLimit && mem[index] != -1) {
            return mem[index];
        }
        long res = 0;
        int up = isHighLimit ? Math.min(high[index], limit) : limit;
        int down = isLowLimit ? low[index] : 0;

        for (int i = down; i <= up; i++) {
            res += dfs(index + 1, low, high, isLowLimit && i == low[index], isHighLimit && i == high[index], mem, limit, s);
        }

        if (!isHighLimit && !isLowLimit) {
            mem[index] = res;
        }
        return res;
    }

}

性能

416.分割等和子集

目标

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

说明:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

思路

给定非空数组 nums,判断能否将数组划分成两个子序列,使得子序列的元素和相等。

可以求出所有元素和,然后记忆化搜索子序列,使用所有元素和减去子序列和可得剩余子序列的和。

代码


/**
 * @date 2025-04-07 8:47
 */
public class CanPartition416 {

    /**
     * 定义 dp[i][j] 表示 i ~ n - 1 是否存在和为 j 的子序列,初始化 dp[n][0] = true
     * 状态转移方程为 dp[i][j] = dp[i + 1][j] || dp[i + 1][j - nums[i]]
     */
    public boolean canPartition_v1(int[] nums) {
        int t = Arrays.stream(nums).sum();
        if (t % 2 != 0) {
            return false;
        }
        int n = nums.length;
        boolean[][] dp = new boolean[n + 1][t / 2 + 1];
        dp[n][0] = true;
        for (int i = n - 1; i >= 0; i--) {
            for (int j = 0; j <= t / 2; j++) {
                dp[i][j] = j >= nums[i] && dp[i + 1][j - nums[i]] || dp[i + 1][j];
            }
        }
        return dp[0][t / 2];
    }

    int total;

    public boolean canPartition(int[] nums) {
        for (int num : nums) {
            total += num;
        }
        if (total % 2 != 0) {
            return false;
        }
        int[][] mem = new int[nums.length][total + 1];
        for (int[] m : mem) {
            Arrays.fill(m, -1);
        }
        return dfs(0, nums, 0, mem);
    }

    public boolean dfs(int index, int[] nums, int sum, int[][] mem) {
        if (index == nums.length) {
            return total == sum << 1;
        }
        if (mem[index][sum] != -1) {
            return mem[index][sum] == 1;
        }
        boolean res;
        res = dfs(index + 1, nums, sum, mem);
        if (!res) {
            res = dfs(index + 1, nums, sum + nums[index], mem);
        }
        mem[index][sum] = res ? 1 : 0;
        return res;
    }

}

性能

368.最大整除子集

目标

给你一个由 无重复 正整数组成的集合 nums ,请你找出并返回其中最大的整除子集 answer ,子集中每一元素对 (answer[i], answer[j]) 都应当满足:

  • answer[i] % answer[j] == 0 ,或
  • answer[j] % answer[i] == 0

如果存在多个有效解子集,返回其中任何一个均可。

示例 1:

输入:nums = [1,2,3]
输出:[1,2]
解释:[1,3] 也会被视为正确答案。

示例 2:

输入:nums = [1,2,4,8]
输出:[1,2,4,8]

说明:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 2 * 10^9
  • nums 中的所有整数 互不相同

思路

// todo

代码

性能

2140.解决智力问题

目标

给你一个下标从 0 开始的二维整数数组 questions ,其中 questions[i] = [pointsi, brainpoweri] 。

这个数组表示一场考试里的一系列题目,你需要 按顺序 (也就是从问题 0 开始依次解决),针对每个问题选择 解决 或者 跳过 操作。解决问题 i 将让你 获得 pointsi 的分数,但是你将 无法 解决接下来的 brainpoweri 个问题(即只能跳过接下来的 brainpoweri 个问题)。如果你跳过问题 i ,你可以对下一个问题决定使用哪种操作。

比方说,给你 questions = [[3, 2], [4, 3], [4, 4], [2, 5]] :

  • 如果问题 0 被解决了, 那么你可以获得 3 分,但你不能解决问题 1 和 2 。
  • 如果你跳过问题 0 ,且解决问题 1 ,你将获得 4 分但是不能解决问题 2 和 3 。

请你返回这场考试里你能获得的 最高 分数。

示例 1:

输入:questions = [[3,2],[4,3],[4,4],[2,5]]
输出:5
解释:解决问题 0 和 3 得到最高分。
- 解决问题 0 :获得 3 分,但接下来 2 个问题都不能解决。
- 不能解决问题 1 和 2
- 解决问题 3 :获得 2 分
总得分为:3 + 2 = 5 。没有别的办法获得 5 分或者多于 5 分。

示例 2:

输入:questions = [[1,1],[2,2],[3,3],[4,4],[5,5]]
输出:7
解释:解决问题 1 和 4 得到最高分。
- 跳过问题 0
- 解决问题 1 :获得 2 分,但接下来 2 个问题都不能解决。
- 不能解决问题 2 和 3
- 解决问题 4 :获得 5 分
总得分为:2 + 5 = 7 。没有别的办法获得 7 分或者多于 7 分。

说明:

  • 1 <= questions.length <= 10^5
  • questions[i].length == 2
  • 1 <= pointsi, brainpoweri <= 10^5

思路

有一个二维数组 questions 表示一场考试里的一系列题目,questions[i][0] 表示解决第 i 题能获得的分数,questions[i][1] 表示解决该题需要消耗的脑力,即解决了第 i 题后,i 后面的 questions[i][1] 个题目都无法解决。返回在该场考试所能获得的最高分。

这个题有许多值得思考的地方,有空整理一下。//todo

代码


/**
 * @date 2025-04-01 8:47
 */
public class MostPoints2140 {

    public long mostPoints(int[][] questions) {
        int n = questions.length;
        long[] dp = new long[n + 1];
        for (int i = n - 1; i >= 0; i--) {
            int j = Math.min(i + questions[i][1] + 1, n);
            dp[i] = Math.max(dp[i + 1], dp[j] + questions[i][0]);
        }
        return dp[0];
    }

}

性能

2712.使所有字符相等的最小成本

目标

给你一个下标从 0 开始、长度为 n 的二进制字符串 s ,你可以对其执行两种操作:

  • 选中一个下标 i 并且反转从下标 0 到下标 i(包括下标 0 和下标 i )的所有字符,成本为 i + 1 。
  • 选中一个下标 i 并且反转从下标 i 到下标 n - 1(包括下标 i 和下标 n - 1 )的所有字符,成本为 n - i 。

返回使字符串内所有字符 相等 需要的 最小成本 。

反转 字符意味着:如果原来的值是 '0' ,则反转后值变为 '1' ,反之亦然。

示例 1:

输入:s = "0011"
输出:2
解释:执行第二种操作,选中下标 i = 2 ,可以得到 s = "0000" ,成本为 2 。可以证明 2 是使所有字符相等的最小成本。

示例 2:

输入:s = "010101"
输出:9
解释:执行第一种操作,选中下标 i = 2 ,可以得到 s = "101101" ,成本为 3 。
执行第一种操作,选中下标 i = 1 ,可以得到 s = "011101" ,成本为 2 。
执行第一种操作,选中下标 i = 0 ,可以得到 s = "111101" ,成本为 1 。
执行第二种操作,选中下标 i = 4 ,可以得到 s = "111110" ,成本为 2 。
执行第二种操作,选中下标 i = 5 ,可以得到 s = "111111" ,成本为 1 。
使所有字符相等的总成本等于 9 。可以证明 9 是使所有字符相等的最小成本。 

说明:

  • 1 <= s.length == n <= 10^5
  • s[i] 为 '0' 或 '1'

思路

有一个二进制字符串,每次操作可以反转前缀 0 ~ i,成本是 i + 1,也可以反转后缀 i ~ n - 1,成本是 n - i。求使字符串所有字符相等的最小成本。

如何操作才能使字符相等?相等字符是 0 还是 1?操作哪边才能使成本最小?

关键点是想清楚与是 0 还是 1 没有关系,只要相邻的元素值不同,就必须要反转,无非是考虑反转前缀还是后缀,每次操作只影响相邻的元素关系。

代码


/**
 * @date 2025-03-27 1:33
 */
public class MinimumCost2712 {

    public long minimumCost(String s) {
        int n = s.length();
        long res = 0;
        for (int i = 1; i < n; i++) {
            if (s.charAt(i) != s.charAt(i - 1)) {
                // i 表示反转 0 ~ i - 1,n - i 表示反转 i ~ n - 1
                res += Math.min(i, n - i);
            }
        }
        return res;
    }
}

性能

2272.最大波动的子字符串

目标

字符串的 波动 定义为子字符串中出现次数 最多 的字符次数与出现次数 最少 的字符次数之差。

给你一个字符串 s ,它只包含小写英文字母。请你返回 s 里所有 子字符串的 最大波动 值。

子字符串 是一个字符串的一段连续字符序列。

示例 1:

输入:s = "aababbb"
输出:3
解释:
所有可能的波动值和它们对应的子字符串如以下所示:
- 波动值为 0 的子字符串:"a" ,"aa" ,"ab" ,"abab" ,"aababb" ,"ba" ,"b" ,"bb" 和 "bbb" 。
- 波动值为 1 的子字符串:"aab" ,"aba" ,"abb" ,"aabab" ,"ababb" ,"aababbb" 和 "bab" 。
- 波动值为 2 的子字符串:"aaba" ,"ababbb" ,"abbb" 和 "babb" 。
- 波动值为 3 的子字符串 "babbb" 。
所以,最大可能波动值为 3 。

示例 2:

输入:s = "abcde"
输出:0
解释:
s 中没有字母出现超过 1 次,所以 s 中每个子字符串的波动值都是 0 。

说明:

  • 1 <= s.length <= 10^4
  • s 只包含小写英文字母。

思路

//todo

代码

性能

2597.美丽子集的数目

目标

给你一个由正整数组成的数组 nums 和一个 正 整数 k 。

如果 nums 的子集中,任意两个整数的绝对差均不等于 k ,则认为该子数组是一个 美丽 子集。

返回数组 nums 中 非空 且 美丽 的子集数目。

nums 的子集定义为:可以经由 nums 删除某些元素(也可能不删除)得到的一个数组。只有在删除元素时选择的索引不同的情况下,两个子集才会被视作是不同的子集。

示例 1:

输入:nums = [2,4,6], k = 2
输出:4
解释:数组 nums 中的美丽子集有:[2], [4], [6], [2, 6] 。
可以证明数组 [2,4,6] 中只存在 4 个美丽子集。

示例 2:

输入:nums = [1], k = 1
输出:1
解释:数组 nums 中的美丽数组有:[1] 。
可以证明数组 [1] 中只存在 1 个美丽子集。

说明:

  • 1 <= nums.length <= 18
  • 1 <= nums[i], k <= 1000

思路

返回数组的美丽子序列个数,美丽指子序列中任意两个元素的差的绝对值不等于 k

由于数组长度不大,可以回溯枚举子序列,并针对每一子序列,两两比较,判断差的绝对值是否等于 k

更好的处理方法是使用哈希表记录元素的出现次数,回溯枚举子序列时直接判断当前元素加减 k 的绝对值是否存在于哈希表中。

代码


/**
 * @date 2025-03-07 0:09
 */
public class BeautifulSubsets2597 {

    public int beautifulSubsets(int[] nums, int k) {
        return dfs(0, new ArrayList<>(), nums, k);
    }

    public int dfs(int index, List<Integer> path, int[] nums, int k) {
        if (index == nums.length) {
            return path.size() > 0 ? 1 : 0;
        }
        int res = 0;
        res += dfs(index + 1, path, nums, k);
        for (Integer num : path) {
            if (Math.abs(num - nums[index]) == k) {
                return res;
            }
        }
        path.add(nums[index]);
        res += dfs(index + 1, path, nums, k);
        path.remove(path.size() - 1);
        return res;
    }

}

性能