3152.特殊数组II

目标

如果数组的每一对相邻元素都是两个奇偶性不同的数字,则该数组被认为是一个 特殊数组 。

有一个整数数组 nums 和一个二维整数矩阵 queries,对于 queries[i] = [fromi, toi],请你帮助检查子数组 nums[fromi..toi] 是不是一个 特殊数组 。

返回布尔数组 answer,如果 nums[fromi..toi] 是特殊数组,则 answer[i] 为 true ,否则,answer[i] 为 false 。

示例 1:

输入:nums = [3,4,1,2,6], queries = [[0,4]]
输出:[false]
解释:
子数组是 [3,4,1,2,6]。2 和 6 都是偶数。

示例 2:

输入:nums = [4,3,1,6], queries = [[0,2],[2,3]]
输出:[false,true]
解释:
子数组是 [4,3,1]。3 和 1 都是奇数。因此这个查询的答案是 false。
子数组是 [1,6]。只有一对:(1,6),且包含了奇偶性不同的数字。因此这个查询的答案是 true。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^5
  • 1 <= queries.length <= 10^5
  • queries[i].length == 2
  • 0 <= queries[i][0] <= queries[i][1] <= nums.length - 1

思路

类似于特殊数组I,只不过是判断子数组是否是特殊数组。我们可以记录奇偶性相同的下标,如果 queries[i] = [fromi, toi] 包含其中的下标对返回false。但是如果所有元素的奇偶性都相同,下标对有n个,查询也是n次,O(n^2) 对于 10^5 的数据规模会超时。

我们可以将问题转化一下,由于仅考虑相邻元素的奇偶性,将数组中的偶数元素都替换为0,奇数元素都替换为1,这样0与1交替出现的是特殊数组。使用前缀和判断不了是否交替出现,只能初步排除一些区间。

之所以超时是因为进行了许多重复判断,我们想直接判断查询区间是否包含奇偶相同的下标对。可以使用二分查找,如果查出的from,to下标相同,说明不相交。

这里比较坑的一点是,题目中没有说明如果查询区间只包含一个值视为奇偶性不同。

log2(10^5) ≈ 16.6 时间复杂度为O(nlogn),耗时30ms,说明10^6的数据规模,O(n)的解法不会超时,以后多留意一下。

看了题解,其实可以使用前缀和,只不过不是将原数组转为0或1计算前缀和,而是定义数组diff,原数组nums相邻元素奇偶性相同为0,不同为1。对应给定的区间,我们就可以根据diff的前缀和判断是否含有奇偶性相同的元素。时间复杂度为O(n),耗时3ms。

也有使用动态规划求解的,记录最近一次奇偶性相同的位置。时间复杂度为O(n),耗时3ms。

代码

/**
 * @date 2024-08-14 9:58
 */
public class IsArraySpecial3152 {

    public boolean[] isArraySpecial_v1(int[] nums, int[][] queries) {
        int n = nums.length;
        List<Integer> from = new ArrayList<>();
        List<Integer> to = new ArrayList<>();
        for (int i = 1; i < n; i++) {
            int j = i - 1;
            if (nums[i] % 2 == nums[j] % 2) {
                from.add(j);
                to.add(i);
            }
        }
        int l = from.size();
        int[] fromArray = new int[l];
        int[] toArray = new int[l];
        for (int i = 0; i < l; i++) {
            fromArray[i] = from.get(i);
            toArray[i] = to.get(i);
        }
        int length = queries.length;
        boolean[] res = new boolean[length];
        Arrays.fill(res, true);
        for (int i = 0; i < length; i++) {
            int[] query = queries[i];
            if (query[0] == query[1]) {
                // 如果查询区间相同认为是特殊区间
                res[i] = true;
                continue;
            }
            int fromIndex = Arrays.binarySearch(fromArray, query[0]);
            if (fromIndex >= 0) {
                // 如果需要查询的数组包含了query[0],由于前面判断了相等的情况,
                // 执行到这里query[1] > query[0],而对应的toIndex 为 fromIndex + 1,
                // 推出 query[1] >= toIndex,说明包含奇偶性相同的下标对,
                res[i] = false;
                continue;
            }
            int toIndex = Arrays.binarySearch(toArray, query[1]);
            if (fromIndex != toIndex) {
                // 执行到这里,fromIndex < 0,如果 toIndex >= 0,由于 query[0] < query[1],推出 query[0] <= fromIndex
                // 如果 toIndex < 0,说明查询区间开始与结束下标都没有找到,
                // 如果插入位置不同,说明也包含了奇偶性相同的元素
                res[i] = false;
            }
        }
        return res;
    }

}

性能

2940.找到Alice和Bob可以相遇的建筑

目标

给你一个下标从 0 开始的正整数数组 heights ,其中 heights[i] 表示第 i 栋建筑的高度。

如果一个人在建筑 i ,且存在 i < j 的建筑 j 满足 heights[i] < heights[j] ,那么这个人可以移动到建筑 j 。

给你另外一个数组 queries ,其中 queries[i] = [ai, bi] 。第 i 个查询中,Alice 在建筑 ai ,Bob 在建筑 bi 。

请你能返回一个数组 ans ,其中 ans[i] 是第 i 个查询中,Alice 和 Bob 可以相遇的 最左边的建筑 。如果对于查询 i ,Alice 和 Bob 不能相遇,令 ans[i] 为 -1 。

示例 1:

输入:heights = [6,4,8,5,2,7], queries = [[0,1],[0,3],[2,4],[3,4],[2,2]]
输出:[2,5,-1,5,2]
解释:第一个查询中,Alice 和 Bob 可以移动到建筑 2 ,因为 heights[0] < heights[2] 且 heights[1] < heights[2] 。
第二个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[0] < heights[5] 且 heights[3] < heights[5] 。
第三个查询中,Alice 无法与 Bob 相遇,因为 Alice 不能移动到任何其他建筑。
第四个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[3] < heights[5] 且 heights[4] < heights[5] 。
第五个查询中,Alice 和 Bob 已经在同一栋建筑中。
对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。
对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

示例 2:

输入:heights = [5,3,8,2,6,1,4,6], queries = [[0,7],[3,5],[5,2],[3,0],[1,6]]
输出:[7,6,-1,4,6]
解释:第一个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[0] < heights[7] 。
第二个查询中,Alice 和 Bob 可以移动到建筑 6 ,因为 heights[3] < heights[6] 且 heights[5] < heights[6] 。
第三个查询中,Alice 无法与 Bob 相遇,因为 Bob 不能移动到任何其他建筑。
第四个查询中,Alice 和 Bob 可以移动到建筑 4 ,因为 heights[3] < heights[4] 且 heights[0] < heights[4] 。
第五个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[1] < heights[6] 。
对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。
对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

说明:

  • 1 <= heights.length <= 5 * 10^4
  • 1 <= heights[i] <= 10^9
  • 1 <= queries.length <= 5 * 10^4
  • queries[i] = [ai, bi]
  • 0 <= ai, bi <= heights.length - 1

思路

有一个数组 heights 表示建筑的高度,另有一个二维数组,其元素 queries[i] = [ai, bi] 表示 Alice 和 Bob 当前所在建筑的下标,规定可以从左向右移动到比当前建筑高的建筑,求 Alice 和 Bob 可以相遇的建筑下标,如果有多个取最左侧的那个。

这个问题的关键在于求出 [max(ai, bi), n) 范围内,高度大于等于 max(heights[ai], heights[bi]) 的建筑下标最小值。暴力求解会超时,考虑使用单调栈,记录下一个高度大于当前建筑的下标。类似于跳表,从较高的建筑出发,查找第一个下标大于等于max(ai, bi)的建筑即可。它存在的问题是如果(ai, bi)之间有极大值,后面还得遍历查找。最坏的情况下,数据依次递增,而满足条件的值在最后,这时退化为暴力求解。

碰巧过了。// todo 研究一下官网题解

代码

/**
 * @date 2024-08-10 19:56
 */
public class LeftmostBuildingQueries2940 {

    public int[] leftmostBuildingQueries_v1(int[] heights, int[][] queries) {
        int num = heights.length;
        int[] next = new int[num];
        Arrays.fill(next, -1);
        ArrayDeque<Integer> stack = new ArrayDeque<>();
        // 单调栈
        for (int i = 0; i < num; i++) {
            while (!stack.isEmpty() && heights[i] > heights[stack.peek()]) {
                next[stack.pop()] = i;
            }
            stack.push(i);
        }
        int n = queries.length;
        int[] res = new int[n];
        Arrays.fill(res, -1);
        for (int i = 0; i < n; i++) {
            int a = queries[i][0];
            int b = queries[i][1];
            if (a == b) {
                res[i] = a;
                continue;
            } else if (a < b && heights[a] < heights[b]) {
                res[i] = b;
                continue;
            } else if (a > b && heights[a] > heights[b]) {
                res[i] = a;
                continue;
            }
            int leftNext = Math.min(a, b);
            int rightNext = Math.max(a, b);
            if (next[leftNext] > rightNext || next[leftNext] == -1) {
                res[i] = next[leftNext];
                continue;
            }
            int height = Math.max(heights[a], heights[b]);
            while (next[rightNext] != -1) {
                if (heights[next[rightNext]] > height) {
                    res[i] = next[rightNext];
                    break;
                } else {
                    rightNext = next[rightNext];
                }
            }
        }
        return res;
    }
}

性能

3086.拾起K个1需要的最少行动次数

目标

给你一个下标从 0 开始的二进制数组 nums,其长度为 n ;另给你一个 正整数 k 以及一个 非负整数 maxChanges 。

Alice 在玩一个游戏,游戏的目标是让 Alice 使用 最少 数量的 行动 次数从 nums 中拾起 k 个 1 。游戏开始时,Alice 可以选择数组 [0, n - 1] 范围内的任何索引 aliceIndex 站立。如果 nums[aliceIndex] == 1 ,Alice 会拾起一个 1 ,并且 nums[aliceIndex] 变成0(这 不算 作一次行动)。之后,Alice 可以执行 任意数量 的 行动(包括零次),在每次行动中 Alice 必须 恰好 执行以下动作之一:

  • 选择任意一个下标 j != aliceIndex 且满足 nums[j] == 0 ,然后将 nums[j] 设置为 1 。这个动作最多可以执行 maxChanges 次。
  • 选择任意两个相邻的下标 x 和 y(|x - y| == 1)且满足 nums[x] == 1, nums[y] == 0 ,然后交换它们的值(将 nums[y] = 1 和 nums[x] = 0)。如果 y == aliceIndex,在这次行动后 Alice 拾起一个 1 ,并且 nums[y] 变成 0 。

返回 Alice 拾起 恰好 k 个 1 所需的 最少 行动次数。

示例 1:

输入:nums = [1,1,0,0,0,1,1,0,0,1], k = 3, maxChanges = 1
输出:3
解释:如果游戏开始时 Alice 在 aliceIndex == 1 的位置上,按照以下步骤执行每个动作,他可以利用 3 次行动拾取 3 个 1 :

游戏开始时 Alice 拾取了一个 1 ,nums[1] 变成了 0。此时 nums 变为 [1,0,0,0,0,1,1,0,0,1] 。
选择 j == 2 并执行第一种类型的动作。nums 变为 [1,0,1,0,0,1,1,0,0,1]
选择 x == 2 和 y == 1 ,并执行第二种类型的动作。nums 变为 [1,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [1,0,0,0,0,1,1,0,0,1] 。
选择 x == 0 和 y == 1 ,并执行第二种类型的动作。nums 变为 [0,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [0,0,0,0,0,1,1,0,0,1] 。
请注意,Alice 也可能执行其他的 3 次行动序列达成拾取 3 个 1 。

示例 2:

输入:nums = [0,0,0,0], k = 2, maxChanges = 3
输出:4
解释:如果游戏开始时 Alice 在 aliceIndex == 0 的位置上,按照以下步骤执行每个动作,他可以利用 4 次行动拾取 2 个 1 :

选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于 y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。
再次选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
再次选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。

说明:

  • 2 <= n <= 10^5
  • 0 <= nums[i] <= 1
  • 1 <= k <= 10^5
  • 0 <= maxChanges <= 10^5
  • maxChanges + sum(nums) >= k

思路

有一个二进制(元素不是0就是1)数组nums,选择一个固定的位置aliceIndex,如果该位置元素值为1,则可以拾起并将元素置0。接下来可以采取行动:

  1. 任选一个不等于aliceIndex且值为0的元素置1
  2. 将任意相邻且元素值不等的元素交换,如果其中一个位置是aliceIndex,且交换后的值为1,则可以拾起这个1并将元素置0

问恰好拾起k个1所需最小行动次数。

很明显行动1要选与aliceIndex相邻的,这样才可以用行动2将1拾起。

我们首先面对的问题是aliceIndex怎么选,要拾取1就需要将1都通过行动2移动到aliceIndex周围,如果拾取一个1的行动次数大于2的话就需要考虑使用行动1直接在aliceIndex周围设置1再拾取。

// todo

代码

性能

826.安排工作以达到最大收益

目标

你有 n 个工作和 m 个工人。给定三个数组: difficulty, profit 和 worker ,其中:

  • difficulty[i] 表示第 i 个工作的难度,profit[i] 表示第 i 个工作的收益。
  • worker[i] 是第 i 个工人的能力,即该工人只能完成难度小于等于 worker[i] 的工作。

每个工人 最多 只能安排 一个 工作,但是一个工作可以 完成多次 。

  • 举个例子,如果 3 个工人都尝试完成一份报酬为 $1 的同样工作,那么总收益为 $3 。如果一个工人不能完成任何工作,他的收益为 $0 。

返回 在把工人分配到工作岗位后,我们所能获得的最大利润 。

示例 1:

输入: difficulty = [2,4,6,8,10], profit = [10,20,30,40,50], worker = [4,5,6,7]
输出: 100 
解释: 工人被分配的工作难度是 [4,4,6,6] ,分别获得 [20,20,30,30] 的收益。

示例 2:

输入: difficulty = [85,47,57], profit = [24,66,99], worker = [40,25,25]
输出: 0

说明:

  • n == difficulty.length
  • n == profit.length
  • m == worker.length
  • 1 <= n, m <= 10^4
  • 1 <= difficulty[i], profit[i], worker[i] <= 10^5

思路

现在有一组任务,其难度与收益分别使用两个数组 difficultyprofit 表示,还有一个数组表示一组工人的能力。现在需要给工人分配工作,如果分配的工作难度大于工人的能力则无法获取收益,求把工人分配到岗后能够获得的最大收益。

我们只需为每个工人分配其能力范围内的收益最高的工作即可。需要注意的是,题目中没有说难度越高收益越高,并且相同难度的收益也会不同

难度与收益是通过下标关联的,并且是无序的。

一个很自然的想法是维护一个难度与最大收益的映射,然后直接根据工人的能力二分查找相应的收益并累加。

那么如何同时对两个相关联的数组进行排序就是解题的关键。这里直接将 difficultyprofit 的映射通过 hashmap 保存起来,然后对 difficulty 从小到大排序。遍历排序后的 difficulty 数组,计算小于该难度的最大收益并更新到profit 中。根据工人的能力二分查找 profit 并累加即可。

容易出错的点是忘记处理相同难度收益不同的情况,二分查找结果为-1时表示无法完成任务任务,不应取难度最低的任务。

官网题解使用的是 javafx.util.Pair/awt包的Point/ 二维数组来保存映射关系。后面收益最高工作的计算,先对 worker 从小到大排序,使用双指针一个指向worker,一个指向难度,后面工人只需从前一个工人的难度开找即可,没用二分查找。

代码

/**
 * @date 2024-05-17 9:20
 */
public class MaxProfitAssignment826 {

    public int maxProfitAssignment(int[] difficulty, int[] profit, int[] worker) {
        int res = 0;
        int n = difficulty.length;
        int m = worker.length;
        Map<Integer, Integer> profitMap = new HashMap<>();
        for (int i = 0; i < n; i++) {
            // 存在难度相同的,取最大的
            if (profitMap.get(difficulty[i]) == null) {
                profitMap.put(difficulty[i], profit[i]);
            } else {
                profitMap.put(difficulty[i], Math.max(profitMap.get(difficulty[i]), profit[i]));
            }
        }
        Arrays.sort(difficulty);
        // 难度从小到大排,更新对应难度可以获得的最大收益
        profit[0] = profitMap.get(difficulty[0]);
        for (int i = 1; i < n; i++) {
            profit[i] = Math.max(profit[i - 1], profitMap.get(difficulty[i]));
        }
        for (int i = 0; i < m; i++) {
            int index = Arrays.binarySearch(difficulty, worker[i]);
            if (index >= 0) {
                res += profit[index];
            } else {
                index = -index - 2;
                if (index >= 0) {
                    // 说明没有能力完成
                    res += profit[index];
                }
            }
        }
        return res;
    }

    // 参考官网题解的答案
    public static class Point{
        public int x;
        public int y;

        public Point(int x, int y) {
            this.x = x;
            this.y = y;
        }
    }

    public int maxProfitAssignment_v1(int[] difficulty, int[] profit, int[] worker) {
        int res = 0;
        int n = difficulty.length;
        Point[] jobs = new Point[n];
        for (int i = 0; i < n; i++) {
            jobs[i] = new Point(difficulty[i], profit[i]);
        }
        Arrays.sort(jobs, (a, b) -> a.x - b.x);
        // 根据工人技能排序
        // 越往后能力越高,可以直接接着上一次难度位置向后遍历
        Arrays.sort(worker);
        int index = 0;
        int best = 0;
        for (int capability : worker) {
            while (index < n && capability >= jobs[index].x) {
                best = Math.max(best, jobs[index++].y);
            }
            res += best;
        }
        return res;
    }
}

性能

最后计算最大收益时在循环中使用二分查找,时间复杂度为O(mlogn),而使用双指针 difficulty 最多遍历一遍,时间复杂度是O(m + n)应该更快一点。另外使用hashMap效率不高,因为需要计算hashcode,不如直接访问。

改进后

2529.正整数和负整数的最大计数

目标

给你一个按 非递减顺序 排列的数组 nums ,返回正整数数目和负整数数目中的最大值。

  • 换句话讲,如果 nums 中正整数的数目是 pos ,而负整数的数目是 neg ,返回 pos 和 neg二者中的最大值。

注意:0 既不是正整数也不是负整数。

示例 1:

输入:nums = [-2,-1,-1,1,2,3]
输出:3
解释:共有 3 个正整数和 3 个负整数。计数得到的最大值是 3 。

示例 2:

输入:nums = [-3,-2,-1,0,0,1,2]
输出:3
解释:共有 2 个正整数和 3 个负整数。计数得到的最大值是 3 。

示例 3:

输入:nums = [5,20,66,1314]
输出:4
解释:共有 4 个正整数和 0 个负整数。计数得到的最大值是 4 。

说明:

  • 1 <= nums.length <= 2000
  • -2000 <= nums[i] <= 2000
  • nums 按 非递减顺序 排列。

进阶:你可以设计并实现时间复杂度为 O(log(n)) 的算法解决此问题吗?

思路

这个题简单做法就是循环计数,O(n)的时间复杂度。O(log(n))需要使用二分查找。Arrays.binarySearch() 是处理不了非严格递增的情况的,如果查找的key有多个,无法保证返回的是哪一个,通常就是中间的那一个。

这里的难点是弄清楚当有多个相同值的时候如何找到第一个。具体来说就是 low 与 high 的更新以及结束条件,自己可以用一个具体的例子来模拟查找的过程。

  • 结束条件是 low == high
  • 如果寻找下界,那么 nums[middle] >= key 更新 high = middlenums[middle] < key 更新 low = middle + 1。返回第一个大于等于key的index。
  • 如果寻找上界,那么 nums[middle] > key 更新 high = middle - 1nums[middle] <= key 更新 low = middle 寻找上界的话只需将等号去掉即可,得到的是第一个小于等于key的index+1。

为什么要 +1 或者 -1? 因为middle指的位置不等于key,不是我们要找的值,不应该再出现在下一次的查找范围内,这是能说的通的。其实最核心的目的是保证最终low、high指向同一个位置,防止出现low与high相差1,但是middle指向的位置也无法触发更新的情况。以[-3,0,0,3,4]为例,我们要找0的下界,如果low的更新不 +1,那么最终就是 low,middle 指向 -3,high 指向第一个0,这不是我们想要的。

代码


/**
 * @date 2024-04-09 1:33
 */
public class MaximumCount2529 {

    public int maximumCount(int[] nums) {
        int pos = 0;
        int neg = 0;
        for (int i = 0; i < nums.length; i++) {
            if (nums[i] < 0) {
                neg++;
            } else if (nums[i] > 0) {
                pos = nums.length - i;
                break;
            }
        }
        return Math.max(pos, neg);
    }

    /**
     * 二分查找
     */
    public int maximumCount_v2(int[] nums) {
        int neg = bs(nums, 0);
        int pos = bs(nums, 1);
        return Math.max(neg, nums.length - pos);
    }

    public int bs(int[] nums, int key) {
        int low = 0, high = nums.length;
        while (low != high) {
            int middle = (low + high) >> 1;
            if (nums[middle] >= key) {
                high = middle;
            } else {
                low = middle + 1;
            }
        }
        return low;
    }
}

性能