2081.k镜像数字的和

目标

一个 k 镜像数字 指的是一个在十进制和 k 进制下从前往后读和从后往前读都一样的 没有前导 0 的 正 整数。

  • 比方说,9 是一个 2 镜像数字。9 在十进制下为 9 ,二进制下为 1001 ,两者从前往后读和从后往前读都一样。
  • 相反地,4 不是一个 2 镜像数字。4 在二进制下为 100 ,从前往后和从后往前读不相同。

给你进制 k 和一个数字 n ,请你返回 k 镜像数字中 最小 的 n 个数 之和 。

示例 1:

输入:k = 2, n = 5
输出:25
解释:
最小的 5 个 2 镜像数字和它们的二进制表示如下:
  十进制       二进制
    1          1
    3          11
    5          101
    7          111
    9          1001
它们的和为 1 + 3 + 5 + 7 + 9 = 25 。

示例 2:

输入:k = 3, n = 7
输出:499
解释:
7 个最小的 3 镜像数字和它们的三进制表示如下:
  十进制       三进制
    1          1
    2          2
    4          11
    8          22
    121        11111
    151        12121
    212        21212
它们的和为 1 + 2 + 4 + 8 + 121 + 151 + 212 = 499 。

示例 3:

输入:k = 7, n = 17
输出:20379000
解释:17 个最小的 7 镜像数字分别为:
1, 2, 3, 4, 5, 6, 8, 121, 171, 242, 292, 16561, 65656, 2137312, 4602064, 6597956, 6958596

说明:

  • 2 <= k <= 9
  • 1 <= n <= 30

思路

核心思想:

  1. 首先枚举 10 进制下的镜像数字
  2. 判断这些镜像数字是否是 k 进制下的镜像数字

代码

//todo

性能

3443.K次修改后的最大曼哈顿距离

目标

给你一个由字符 'N'、'S'、'E' 和 'W' 组成的字符串 s,其中 s[i] 表示在无限网格中的移动操作:

  • 'N':向北移动 1 个单位。
  • 'S':向南移动 1 个单位。
  • 'E':向东移动 1 个单位。
  • 'W':向西移动 1 个单位。

初始时,你位于原点 (0, 0)。你 最多 可以修改 k 个字符为任意四个方向之一。

请找出在 按顺序 执行所有移动操作过程中的 任意时刻 ,所能达到的离原点的 最大曼哈顿距离 。

曼哈顿距离 定义为两个坐标点 (xi, yi) 和 (xj, yj) 的横向距离绝对值与纵向距离绝对值之和,即 |xi - xj| + |yi - yj|。

示例 1:

输入:s = "NWSE", k = 1
输出:3
解释:
将 s[2] 从 'S' 改为 'N' ,字符串 s 变为 "NWNE" 。
移动操作 位置 (x, y) 曼哈顿距离 最大值
s[0] == 'N' (0, 1) 0 + 1 = 1 1
s[1] == 'W' (-1, 1) 1 + 1 = 2 2
s[2] == 'N' (-1, 2) 1 + 2 = 3 3
s[3] == 'E' (0, 2) 0 + 2 = 2 3
执行移动操作过程中,距离原点的最大曼哈顿距离是 3 。

示例 2:

输入:s = "NSWWEW", k = 3
输出:6
解释:
将 s[1] 从 'S' 改为 'N' ,将 s[4] 从 'E' 改为 'W' 。字符串 s 变为 "NNWWWW" 。
执行移动操作过程中,距离原点的最大曼哈顿距离是 6 。

说明:

  • 1 <= s.length <= 10^5
  • 0 <= k <= s.length
  • s 仅由 'N'、'S'、'E' 和 'W' 。

思路

从原点 (0, 0) 出发,根据操作序列 s 朝四个方向移动,最多可以修改序列中 k 个方向,求能够到达的距离原点的最大曼哈顿距离。

遍历过程中记录距离变小的次数,每修改一次可以使得最大距离加 2

网友指出每走一步可能增大的距离最多为 2 * k,但是不能超过往一个方向一直走的情况,即当前走的步数 i + 1

代码


/**
 * @date 2025-06-20 21:47
 */
public class MaxDistance3443 {

    private static final Map<Character, int[]> MAP = new HashMap<>();

    static {
        MAP.put('N', new int[]{0, 1});
        MAP.put('S', new int[]{0, -1});
        MAP.put('E', new int[]{1, 0});
        MAP.put('W', new int[]{-1, 0});
    }

    public int maxDistance(String s, int k) {
        int res = 0;
        int d = 0;
        int prev = 0;
        int backCnt = 0;
        int[] curPos = new int[]{0, 0};
        char[] move = s.toCharArray();
        for (char dir : move) {
            prev = d;
            int[] delta = MAP.get(dir);
            int dx = delta[0];
            int dy = delta[1];
            curPos[0] += dx;
            curPos[1] += dy;
            d = Math.abs(curPos[0]) + Math.abs(curPos[1]);
            if (prev > d) {
                backCnt++;
            }
            res = Math.max(res, d + Math.min(backCnt, k) * 2);
        }
        return res;
    }
}

性能

3405.统计恰好有K个相等相邻元素的数组数目

目标

给你三个整数 n ,m ,k 。长度为 n 的 好数组 arr 定义如下:

  • arr 中每个元素都在 闭 区间 [1, m] 中。
  • 恰好 有 k 个下标 i (其中 1 <= i < n)满足 arr[i - 1] == arr[i] 。

请你返回可以构造出的 好数组 数目。

由于答案可能会很大,请你将它对 109 + 7 取余 后返回。

示例 1:

输入:n = 3, m = 2, k = 1
输出:4
解释:
总共有 4 个好数组,分别是 [1, 1, 2] ,[1, 2, 2] ,[2, 1, 1] 和 [2, 2, 1] 。
所以答案为 4 。

示例 2:

输入:n = 4, m = 2, k = 2
输出:6
解释:
好数组包括 [1, 1, 1, 2] ,[1, 1, 2, 2] ,[1, 2, 2, 2] ,[2, 1, 1, 1] ,[2, 2, 1, 1] 和 [2, 2, 2, 1] 。
所以答案为 6 。

示例 3:

输入:n = 5, m = 2, k = 0
输出:2
解释:
好数组包括 [1, 2, 1, 2, 1] 和 [2, 1, 2, 1, 2] 。
所以答案为 2 。

说明:

  • 1 <= n <= 10^5
  • 1 <= m <= 10^5
  • 0 <= k <= n - 1

思路

//todo

代码

性能

2929.给小朋友们分糖果II

目标

给你两个正整数 n 和 limit 。

请你将 n 颗糖果分给 3 位小朋友,确保没有任何小朋友得到超过 limit 颗糖果,请你返回满足此条件下的 总方案数 。

示例 1:

输入:n = 5, limit = 2
输出:3
解释:总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 :(1, 2, 2) ,(2, 1, 2) 和 (2, 2, 1) 。

示例 2:

输入:n = 3, limit = 3
输出:10
解释:总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 :(0, 0, 3) ,(0, 1, 2) ,(0, 2, 1) ,(0, 3, 0) ,(1, 0, 2) ,(1, 1, 1) ,(1, 2, 0) ,(2, 0, 1) ,(2, 1, 0) 和 (3, 0, 0) 。

说明:

  • 1 <= n <= 10^6
  • 1 <= limit <= 10^6

思路

n 颗糖果分给 3 位小朋友,每个小朋友分到的糖果数量不超过 limit,求分配的方案数。注意,糖果必须分完,比如示例 1,不存在分得糖果数量为 0 的情况。

  • 第一个小朋友分到的糖果数为 a ∈ [0, Math.min(n, limit)]
  • 第二个小朋友分到的糖果数为 b ∈ [Math.max(0, n - a - limit), Math.min(n - a, limit)]
  • 第三个小朋友分到的糖果数为 n - a - b

代码


/**
 * @date 2025-06-01 21:49
 */
public class DistributeCandies2929 {

    public long distributeCandies(int n, int limit) {
        long res = 0L;
        for (int i = 0; i <= Math.min(n, limit); i++) {
            if (n - i > 2 * limit) {
                continue;
            }
            res += Math.min(n - i, limit) - Math.max(0, n - i - limit) + 1;
        }
        return res;
    }
}

性能

2338.统计理想数组的数目

目标

给你两个整数 n 和 maxValue ,用于描述一个 理想数组 。

对于下标从 0 开始、长度为 n 的整数数组 arr ,如果满足以下条件,则认为该数组是一个 理想数组 :

  • 每个 arr[i] 都是从 1 到 maxValue 范围内的一个值,其中 0 <= i < n 。
  • 每个 arr[i] 都可以被 arr[i - 1] 整除,其中 0 < i < n 。

返回长度为 n 的 不同 理想数组的数目。由于答案可能很大,返回对 10^9 + 7 取余的结果。

示例 1:

输入:n = 2, maxValue = 5
输出:10
解释:存在以下理想数组:
- 以 1 开头的数组(5 个):[1,1]、[1,2]、[1,3]、[1,4]、[1,5]
- 以 2 开头的数组(2 个):[2,2]、[2,4]
- 以 3 开头的数组(1 个):[3,3]
- 以 4 开头的数组(1 个):[4,4]
- 以 5 开头的数组(1 个):[5,5]
共计 5 + 2 + 1 + 1 + 1 = 10 个不同理想数组。

示例 2:

输入:n = 5, maxValue = 3
输出:11
解释:存在以下理想数组:
- 以 1 开头的数组(9 个):
   - 不含其他不同值(1 个):[1,1,1,1,1] 
   - 含一个不同值 2(4 个):[1,1,1,1,2], [1,1,1,2,2], [1,1,2,2,2], [1,2,2,2,2]
   - 含一个不同值 3(4 个):[1,1,1,1,3], [1,1,1,3,3], [1,1,3,3,3], [1,3,3,3,3]
- 以 2 开头的数组(1 个):[2,2,2,2,2]
- 以 3 开头的数组(1 个):[3,3,3,3,3]
共计 9 + 1 + 1 = 11 个不同理想数组。

说明:

  • 2 <= n <= 10^4
  • 1 <= maxValue <= 10^4

思路

//todo

代码

性能

2176.统计数组中相等且可以被整除的数对

目标

给你一个下标从 0 开始长度为 n 的整数数组 nums 和一个整数 k ,请你返回满足 0 <= i < j < n ,nums[i] == nums[j] 且 (i * j) 能被 k 整除的数对 (i, j) 的 数目 。

示例 1:

输入:nums = [3,1,2,2,2,1,3], k = 2
输出:4
解释:
总共有 4 对数符合所有要求:
- nums[0] == nums[6] 且 0 * 6 == 0 ,能被 2 整除。
- nums[2] == nums[3] 且 2 * 3 == 6 ,能被 2 整除。
- nums[2] == nums[4] 且 2 * 4 == 8 ,能被 2 整除。
- nums[3] == nums[4] 且 3 * 4 == 12 ,能被 2 整除。

示例 2:

输入:nums = [1,2,3,4], k = 1
输出:0
解释:由于数组中没有重复数值,所以没有数对 (i,j) 符合所有要求。

说明:

  • 1 <= nums.length <= 100
  • 1 <= nums[i], k <= 100

思路

找出数组中下标不同的数对,使数对元素值相同且下标的乘积能够被 k 整除,返回满足要求的数对个数。

根据题意模拟即可。

有网友提出了使用原数组原地保存后面一个相同元素的下标,组成一个元素值相同的链表,避免重复判断不相等的元素。

也有网友提出了 O(nlogn) 的解法,与当前元素 nums[j] 组成合法数对需要满足 i < j,并且 nums[i] == nums[j] && (i * j) % k == 0nums[i] 必须提供因子 k2 = k / gcd(k, j),问题转化为查找 j 前,包含因子 k2 且与当前元素值相同的元素个数。提前预处理每一个数的因子列表,遍历当前值的因子列表,将每一个因子与当前值组成 key 并计数。

代码

/**
 * @date 2025-04-17 0:09
 */
public class CountPairs2176 {

    public int countPairs(int[] nums, int k) {
        int n = nums.length;
        int res = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                if (nums[i] == nums[j] && i * j % k == 0){
                    res++;
                }
            }
        }
        return res;
    }
}

性能

2829.k-avoiding数组的最小总和

目标

给你两个整数 n 和 k 。

对于一个由 不同 正整数组成的数组,如果其中不存在任何求和等于 k 的不同元素对,则称其为 k-avoiding 数组。

返回长度为 n 的 k-avoiding 数组的可能的最小总和。

示例 1:

输入:n = 5, k = 4
输出:18
解释:设若 k-avoiding 数组为 [1,2,4,5,6] ,其元素总和为 18 。
可以证明不存在总和小于 18 的 k-avoiding 数组。

示例 2:

输入:n = 2, k = 6
输出:3
解释:可以构造数组 [1,2] ,其元素总和为 3 。
可以证明不存在总和小于 3 的 k-avoiding 数组。 

说明:

  • 1 <= n, k <= 50

思路

定义 k-avoiding 数组是由不同的正整数组成,并且任意两个元素的和不等于 k 的数组。求长度为 n 的 k-avoiding 数组的最小和。

构造一个长度为 n 的正整数数组,要使和最小,需要从 num = 1 开始选,跳过 k - num

网友指出可以使用等差数列求和来计算,第一部分是 1 ~ m, m = min(k / 2, n) 和为 m * (m + 1) / 2,第二部分是 k ~ k + n - m - 1,和为 (n - m) * (2 * k + n - m - 1) / 2

代码


/**
 * @date 2025-03-26 0:13
 */
public class MinimumSum2829 {

    public int minimumSum(int n, int k) {
        int res = 0;
        int length = 0;
        int num = 1;
        Set<Integer> avoiding = new HashSet<>();
        while (length < n) {
            if (avoiding.contains(num)) {
                num++;
                continue;
            }
            if (num < k) {
                avoiding.add(k - num);
            }
            length++;
            res += num;
            num++;
        }
        return res;
    }

}

性能

3138.同位字符串连接的最小长度

目标

给你一个字符串 s ,它由某个字符串 t 和若干 t 的 同位字符串 连接而成。

请你返回字符串 t 的 最小 可能长度。

同位字符串 指的是重新排列一个单词得到的另外一个字符串,原来字符串中的每个字符在新字符串中都恰好只使用一次。

示例 1:

输入:s = "abba"
输出:2
解释:
一个可能的字符串 t 为 "ba" 。

示例 2:

输入:s = "cdef"
输出:4
解释:
一个可能的字符串 t 为 "cdef" ,注意 t 可能等于 s 。

说明:

  • 1 <= s.length <= 10^5
  • s 只包含小写英文字母。

思路

字符串 s 由某个字符串 t 以及若干(可以为0) t 的同位字符串 连接 而成,返回字符串 t 最小的可能长度。同位字符串指构成字符串的字符分布完全相同,换句话说就是不同字符的种类与数量完全相同。

特别注意该题与字串的顺序有关,比如 aabb 并不能由 ab 拼接而来,它的同位字符串是 abba,只能构成 abba abab baab baba

注意到子串的长度 length 一定能够被 s.length 整除。将字符串截成 k 个长度为 length 的子字符串,通过计算这些子字符串的字母个数,判断是否是同位字符串,从小到大遍历因数 length,取最小的即可。

代码


/**
 * @date 2024-12-20 9:08
 */
public class MinAnagramLength3138 {

    public int minAnagramLength_v1(String s) {
        int n = s.length();
        int[] cnt = new int[26];
        Map<Integer, int[]> possibleLength = new LinkedHashMap<>();
        for (int i = 0; i < n; i++) {
            int c = s.charAt(i) - 'a';
            cnt[c]++;
            int length = i + 1;
            if (n % length == 0) {
                int[] composition = new int[26];
                System.arraycopy(cnt, 0, composition, 0, 26);
                possibleLength.put(length, composition);
            }
        }
        char[] chars = s.toCharArray();
        for (Map.Entry<Integer, int[]> entry : possibleLength.entrySet()) {
            int length = entry.getKey();
            if (length == n) {
                return n;
            }
            int[] composition = entry.getValue();
            int loop = n / length;
            boolean find = true;
            here:
            for (int i = 0; i < loop; i++) {
                int[] tmp = new int[26];
                System.arraycopy(composition, 0, tmp, 0, 26);
                for (int j = 0; j < length; j++) {
                    int c = chars[i * length + j] - 'a';
                    tmp[c]--;
                    if (tmp[c] < 0) {
                        find = false;
                        break here;
                    }
                }
            }
            if (find) {
                return length;
            }
        }
        return n;
    }

}

性能

3266.K次乘运算后的最终数组II

目标

给你一个整数数组 nums ,一个整数 k 和一个整数 multiplier 。

你需要对 nums 执行 k 次操作,每次操作中:

  • 找到 nums 中的 最小 值 x ,如果存在多个最小值,选择最 前面 的一个。
  • 将 x 替换为 x * multiplier 。

k 次操作以后,你需要将 nums 中每一个数值对 10^9 + 7 取余。

请你返回执行完 k 次乘运算以及取余运算之后,最终的 nums 数组。

示例 1:

输入:nums = [2,1,3,5,6], k = 5, multiplier = 2
输出:[8,4,6,5,6]
解释:
操作 结果
1 次操作后 [2, 2, 3, 5, 6]
2 次操作后 [4, 2, 3, 5, 6]
3 次操作后 [4, 4, 3, 5, 6]
4 次操作后 [4, 4, 6, 5, 6]
5 次操作后 [8, 4, 6, 5, 6]
取余操作后 [8, 4, 6, 5, 6]

示例 2:

输入:nums = [100000,2000], k = 2, multiplier = 1000000
输出:[999999307,999999993]
解释:
操作 结果
1 次操作后 [100000, 2000000000]
2 次操作后 [100000000000, 2000000000]
取余操作后 [999999307, 999999993]

说明:

  • 1 <= nums.length <= 10^4
  • 1 <= nums[i] <= 10^9
  • 1 <= k <= 10^9
  • 1 <= multiplier <= 10^6

思路

有一个数组 nums,我们需要执行 k 次操作,每次操作选择数组中最小元素 min,并将它的值替换为 min * multiplier,返回最终的数组。数据范围比 3264.K次乘运算后的最终数组I 大,multiplier 也大,会溢出,需要进行取余运算。

首先 k 最大 10^9,还沿用昨天模拟的解法会超时。更重要的是,由于乘积很大,我们只能在队列中保存取余后的数据,如果还按找之前模拟来取最小元素就不对了。

我们发现,当执行一些次操作之后,所有元素都会被乘以 multiplier,当 k / n 比较大时,我们可以使用快速幂先计算出 multiplierk/n 幂,然后再与元素相乘。

关键在于何时开始使用上面的思路来计算,考虑 1 2 4 8 16multiplier2,k 为 20

2   2   4   8   16
4   2   4   8   16
4   4   4   8   16
8   4   4   8   16
8   8   4   8   16
8   8   8   8   16
16  8   8   8   16
16  16  8   8   16
16  16  16  8   16
16  16  16  16  16

可以发现 当前数组 最小值 乘以 multiplier 大于 原数组 元素的 最大值 时,后面再乘以 multiplier 就是每一个元素执行一次了。

因此我们需要先使用堆模拟前面几次操作,直到满足上面的条件。注意:堆中数据不能取模,满足条件之前堆中数据使用 long 型不会溢出。

代码


/**
 * @date 2024-12-14 10:31
 */
public class GetFinalState3266 {

    public int[] getFinalState(int[] nums, int k, int multiplier) {
        if (multiplier == 1) {
            return nums;
        }
        int mod = 1000000007;
        int n = nums.length;
        long[] mul = new long[n];
        for (int i = 0; i < n; i++) {
            mul[i] = nums[i];
        }
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> {
            long compare = mul[a] - mul[b];
            if (compare != 0) {
                return (int) compare;
            }
            return a - b;
        });
        long max = 0;
        for (int i = 0; i < n; i++) {
            q.offer(i);
            max = Math.max(max, nums[i]);
        }
        int i = 0;
        for (; i < k; i++) {
            if (mul[q.peek()] * (long) multiplier > max) {
                break;
            }
            Integer index = q.poll();
            mul[index] = mul[index] * multiplier;
            q.offer(index);
        }
        int remainder = k - i;
        if (remainder >= n) {
            long pow = pow(multiplier, remainder / n);
            for (int j = 0; j < n; j++) {
                Integer index = q.poll();
                int rem = remainder % n;
                mul[index] = (int) ((mul[index] * pow % mod * (j < rem ? (long) multiplier : 1)) % mod);
            }
        } else {
            for (int j = 0; j < remainder; j++) {
                Integer index = q.poll();
                mul[index] = (int) ((mul[index] * (long) multiplier) % mod);
                q.offer(index);
            }
        }
        for (int j = 0; j < n; j++) {
            nums[j] = (int) mul[j];
        }
        return nums;
    }

    public long pow(long base, int exponent) {
        long res = 1;
        int mod = 1000000007;
        while (exponent > 0) {
            if ((exponent & 1) == 1) {
                res = res * base % mod;
            }
            base = base * base % mod;
            exponent >>= 1;
        }
        return res;
    }

}

性能

935.骑士拨号器

目标

象棋骑士有一个独特的移动方式,它可以垂直移动两个方格,水平移动一个方格,或者水平移动两个方格,垂直移动一个方格(两者都形成一个 L 的形状)。

象棋骑士可能的移动方式如下图所示:

我们有一个象棋骑士和一个电话垫,如下所示,骑士只能站在一个数字单元格上(即蓝色单元格)。

给定一个整数 n,返回我们可以拨多少个长度为 n 的不同电话号码。

你可以将骑士放置在任何数字单元格上,然后你应该执行 n - 1 次移动来获得长度为 n 的号码。所有的跳跃应该是有效的骑士跳跃。

因为答案可能很大,所以输出答案模 10^9 + 7.

示例 1:

输入:n = 1
输出:10
解释:我们需要拨一个长度为1的数字,所以把骑士放在10个单元格中的任何一个数字单元格上都能满足条件。

示例 2:

输入:n = 2
输出:20
解释:我们可以拨打的所有有效号码为[04, 06, 16, 18, 27, 29, 34, 38, 40, 43, 49, 60, 61, 67, 72, 76, 81, 83, 92, 94]

示例 3:

输入:n = 3131
输出:136006598
解释:注意取模

说明:

  • 1 <= n <= 5000

思路

有一个电话键盘,布局如下:

1  2  3
4  5  6
7  8  9
*  0  #

开始时,将一个骑士棋子放在数字键上,然后按照国际象棋骑士的走法(类似于中国象棋里的马)走 n - 1 步,问能够组成多少种长度为 n 的不同号码(不能走到 *#)。

这道题与 688.骑士在棋盘上的概率 类似,只不过棋盘更小,状态转移是确定的。

定义 dp[k][i] 表示以 i 结尾长度为 k 的号码组合数。初始时,dp[1][i] 均为 1。状态转移方程,针对不同的数字有所不同,例如 dp[k][1] = dp[k - 1][8] + dp[k - 1][6]dp[k][4] = dp[k - 1][3] + dp[k - 1][9] + dp[k - 1][0]等等。

1 - 6 - 7
|   |   |
8   0   2
|   |   |
3 - 4 - 9

仔细分析可以得到上面的状态转化图,1 3 7 9 的结果是完全相同的,同理 2 8 也可以认为是一个状态,4 6 是一个状态,0 是一个状态。定义以上 4 个状态为 a b c d,那么最终结果可以表示为 4 * dp[n][a] + 2 * dp[n][b] + 2 * dp[n][c] + dp[n][d],状态转移方程为:

  • dp[k][a] = dp[k - 1][b] + dp[k - 1][c]
  • dp[k][b] = 2 * dp[k - 1][a]
  • dp[k][c] = 2 * dp[k - 1][a] + dp[k - 1][d]
  • dp[k][d] = 2 * dp[k - 1][c]

注意 k 的初值为 2k == 1 是特殊情况,骑士可以在数字 5,但是无法继续移动。dp[2][a] = 2, dp[2][b] = 2, dp[2][c] = 3, dp[2][d] = 2

如果写成矩阵的形式 列向量 dp[k] 等于 A · dp[k - 1],其中矩阵 A 为:

0 1 1 0
2 0 0 0
2 0 0 1
0 0 2 0

因此 dp[n] = A^(n - 1) · dp[1],其中 dp[1] = [1, 1, 1, 1]。我们可以使用矩阵的快速幂求解。

代码


/**
 * @date 2024-12-10 9:39
 */
public class KnightDialer935 {

    public static int mod = 1000000007;

    public int knightDialer_v3(int n) {
        if (n == 1) {
            return 10;
        }
        long[][] A = new long[][]{
                {0, 1, 1, 0},
                {2, 0, 0, 0},
                {2, 0, 0, 1},
                {0, 0, 2, 0},
        };
        A = pow(A, n - 1);
        long[] res = new long[4];
        for (int i = 0; i < 4; i++) {
            for (int j = 0; j < 4; j++) {
                res[i] += A[i][j];
            }
        }
        return (int) ((4 * res[0] + 2 * res[1] + 2 * res[2] + res[3]) % mod);
    }

    public long[][] pow(long[][] A, int exponent) {
        long[][] res = new long[][]{
                {1, 0, 0, 0},
                {0, 1, 0, 0},
                {0, 0, 1, 0},
                {0, 0, 0, 1},
        };
        while (exponent > 0) {
            if ((exponent & 1) == 1) {
                res = mul(A, res);
            }
            A = mul(A, A);
            exponent >>= 1;
        }
        return res;
    }

    public long[][] mul(long[][] A1, long[][] A2) {
        long[][] res = new long[4][4];
        for (int i = 0; i < 4; i++) {
            for (int k = 0; k < 4; k++) {
                if (A1[i][k] == 0) {
                    continue;
                }
                for (int j = 0; j < 4; j++) {
                    res[i][j] = (res[i][j] + A1[i][k] * A2[k][j]) % mod;
                }
            }
        }
        return res;
    }

    public static long[][] dp;
    public static int MAX = 5001;

    static {
        dp = new long[MAX][4];
        dp[2][0] = 2;
        dp[2][1] = 2;
        dp[2][2] = 3;
        dp[2][3] = 2;
        for (int k = 3; k < MAX; k++) {
            dp[k][0] = (dp[k - 1][1] + dp[k - 1][2]) % mod;
            dp[k][1] = (2 * dp[k - 1][0]) % mod;
            dp[k][2] = (2 * dp[k - 1][0] + dp[k - 1][3]) % mod;
            dp[k][3] = (2 * dp[k - 1][2]) % mod;
        }
    }

    public int knightDialer_v2(int n) {
        if (n == 1) {
            return 10;
        }
        return (int)((4 * dp[n][0] + 2 * dp[n][1] + 2 * dp[n][2] + dp[n][3]) % mod);
    }

    public int knightDialer_v1(int n) {
        long[][] dp = new long[n + 1][10];
        dp[1] = new long[]{1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
        int MOD = 1000000007;
        int res = 0;
        for (int k = 2; k <= n; k++) {
            dp[k][0] = (dp[k - 1][4] + dp[k - 1][6]) % MOD;
            dp[k][1] = (dp[k - 1][6] + dp[k - 1][8]) % MOD;
            dp[k][2] = (dp[k - 1][7] + dp[k - 1][9]) % MOD;
            dp[k][3] = (dp[k - 1][4] + dp[k - 1][8]) % MOD;
            dp[k][4] = (dp[k - 1][3] + dp[k - 1][9] + dp[k - 1][0]) % MOD;
            dp[k][6] = (dp[k - 1][1] + dp[k - 1][7] + dp[k - 1][0]) % MOD;
            dp[k][7] = (dp[k - 1][2] + dp[k - 1][6]) % MOD;
            dp[k][8] = (dp[k - 1][1] + dp[k - 1][3]) % MOD;
            dp[k][9] = (dp[k - 1][2] + dp[k - 1][4]) % MOD;
        }
        for (int i = 0; i < 10; i++) {
            res = (int) (res + dp[n][i]) % MOD;
        }
        return res;
    }

}

性能