871.最低加油次数

目标

汽车从起点出发驶向目的地,该目的地位于出发位置东面 target 英里处。

沿途有加油站,用数组 stations 表示。其中 stations[i] = [positioni, fueli] 表示第 i 个加油站位于出发位置东面 positioni 英里处,并且有 fueli 升汽油。

假设汽车油箱的容量是无限的,其中最初有 startFuel 升燃料。它每行驶 1 英里就会用掉 1 升汽油。当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。

为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1 。

注意:如果汽车到达加油站时剩余燃料为 0,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0,仍然认为它已经到达目的地。

示例 1:

输入:target = 1, startFuel = 1, stations = []
输出:0
解释:可以在不加油的情况下到达目的地。

示例 2:

输入:target = 100, startFuel = 1, stations = [[10,100]]
输出:-1
解释:无法抵达目的地,甚至无法到达第一个加油站。

示例 3:

输入:target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]]
输出:2
解释:
出发时有 10 升燃料。
开车来到距起点 10 英里处的加油站,消耗 10 升燃料。将汽油从 0 升加到 60 升。
然后,从 10 英里处的加油站开到 60 英里处的加油站(消耗 50 升燃料),
并将汽油从 10 升加到 50 升。然后开车抵达目的地。
沿途在两个加油站停靠,所以返回 2 。

说明:

  • 1 <= target, startFuel <= 10^9
  • 0 <= stations.length <= 500
  • 1 <= positioni < positioni+1 < target
  • 1 <= fueli < 10^9

思路

已知汽车油耗为 1 英里/升,现在想要开车前往 target 英里外的目的地,出发时车中有 startFuel 升油,沿途有 stations.length 个加油站,stations[i][0] 表示加油站 i 距出发地的距离,stations[i][1] 表示加油站 i 的汽油总量。假设汽车油箱无限大,求到达目的地的最少加油次数,如果无法到达返回 -1

可以将出发点、加油站、目的地画到数轴上,由于油耗为 1 英里/升,有多少升油就可以到达多远的距离。那么问题转化为从 n 个加油站中选取最少的个数,使油箱油量大于等于 target。要使选择的加油站最少,那么应该首选油量多的加油站,前提是能够抵达该加油站。我们可以使用大顶堆维护加油站油量,将能够抵达的加油站放入其中,然后将堆顶的油加入油箱,将新的能够抵达的加油站放入堆中,直到油箱中的油量大于等于 target

代码


/**
 * @date 2024-10-07 21:09
 */
public class MinRefuelStops871 {

    public int minRefuelStops(int target, int startFuel, int[][] stations) {
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a);
        int n = stations.length;
        int i = 0;
        int res = 0;
        int fuel = startFuel;
        while (fuel < target) {
            while (i < n && fuel >= stations[i][0]) {
                q.offer(stations[i++][1]);
            }
            if (!q.isEmpty()) {
                fuel += q.poll();
                res++;
                if (fuel >= target) {
                    return res;
                }
            } else if (i == n || fuel < stations[i][0]) {
                // 没有剩余的加油站或者无法抵达
                return -1;
            }
        }
        return res;
    }

}

性能

1845.座位预约管理系统

目标

请你设计一个管理 n 个座位预约的系统,座位编号从 1 到 n 。

请你实现 SeatManager 类:

  • SeatManager(int n) 初始化一个 SeatManager 对象,它管理从 1 到 n 编号的 n 个座位。所有座位初始都是可预约的。
  • int reserve() 返回可以预约座位的 最小编号 ,此座位变为不可预约。
  • void unreserve(int seatNumber) 将给定编号 seatNumber 对应的座位变成可以预约。

示例 1:

输入:
["SeatManager", "reserve", "reserve", "unreserve", "reserve", "reserve", "reserve", "reserve", "unreserve"]
[[5], [], [], [2], [], [], [], [], [5]]
输出:
[null, 1, 2, null, 2, 3, 4, 5, null]

解释:
SeatManager seatManager = new SeatManager(5); // 初始化 SeatManager ,有 5 个座位。
seatManager.reserve();    // 所有座位都可以预约,所以返回最小编号的座位,也就是 1 。
seatManager.reserve();    // 可以预约的座位为 [2,3,4,5] ,返回最小编号的座位,也就是 2 。
seatManager.unreserve(2); // 将座位 2 变为可以预约,现在可预约的座位为 [2,3,4,5] 。
seatManager.reserve();    // 可以预约的座位为 [2,3,4,5] ,返回最小编号的座位,也就是 2 。
seatManager.reserve();    // 可以预约的座位为 [3,4,5] ,返回最小编号的座位,也就是 3 。
seatManager.reserve();    // 可以预约的座位为 [4,5] ,返回最小编号的座位,也就是 4 。
seatManager.reserve();    // 唯一可以预约的是座位 5 ,所以返回 5 。
seatManager.unreserve(5); // 将座位 5 变为可以预约,现在可预约的座位为 [5] 。

说明:

  • 1 <= n <= 10^5
  • 1 <= seatNumber <= n
  • 每一次对 reserve 的调用,题目保证至少存在一个可以预约的座位。
  • 每一次对 unreserve 的调用,题目保证 seatNumber 在调用函数前都是被预约状态。
  • 对 reserve 和 unreserve 的调用 总共 不超过 10^5 次。

思路

设计一个座位预约系统,初始化 n 个座位,可以预约尚未预约的编号最小的座位,支持取消预约操作。

核心是解决取消预约后如何获取编号最小值的问题,可以使用最小堆维护剩余座位。

网友指出,初始化的复杂度与 n 有关,当 n 规模过大时会超时。可以使用最小堆维护取消预订的座位,显然取消预订的座位编号一定小于未被预定的座位编号。记录已预定出去的座位最高位 max,如果堆不为空则取堆顶元素,否则返回 max + 1

代码


/**
 * @date 2024-09-30 21:46
 */
public  class SeatManager {

    private PriorityQueue<Integer> q;

    public SeatManager(int n) {
        q = new PriorityQueue<>();
        for (int i = 1; i <= n; i++) {
            q.offer(i);
        }
    }

    public int reserve() {
        return q.poll();
    }

    public void unreserve(int seatNumber) {
        q.offer(seatNumber);
    }

}

性能