3459.最长V形对角线段的长度

目标

给你一个大小为 n x m 的二维整数矩阵 grid,其中每个元素的值为 0、1 或 2。

V 形对角线段 定义如下:

  • 线段从 1 开始。
  • 后续元素按照以下无限序列的模式排列:2, 0, 2, 0, ...。
  • 该线段:
    • 起始于某个对角方向(左上到右下、右下到左上、右上到左下或左下到右上)。
    • 沿着相同的对角方向继续,保持 序列模式 。
    • 在保持 序列模式 的前提下,最多允许 一次顺时针 90 度转向 另一个对角方向。

返回最长的 V 形对角线段 的 长度 。如果不存在有效的线段,则返回 0。

示例 1:

输入: grid = [[2,2,1,2,2],[2,0,2,2,0],[2,0,1,1,0],[1,0,2,2,2],[2,0,0,2,2]]
输出: 5
解释:
最长的 V 形对角线段长度为 5,路径如下:(0,2) → (1,3) → (2,4),在 (2,4) 处进行 顺时针 90 度转向 ,继续路径为 (3,3) → (4,2)。

示例 2:

输入: grid = [[2,2,2,2,2],[2,0,2,2,0],[2,0,1,1,0],[1,0,2,2,2],[2,0,0,2,2]]
输出: 4
解释:
最长的 V 形对角线段长度为 4,路径如下:(2,3) → (3,2),在 (3,2) 处进行 顺时针 90 度转向 ,继续路径为 (2,1) → (1,0)。

示例 3:

输入: grid = [[1,2,2,2,2],[2,2,2,2,0],[2,0,0,0,0],[0,0,2,2,2],[2,0,0,2,0]]
输出: 5
解释:
最长的 V 形对角线段长度为 5,路径如下:(0,0) → (1,1) → (2,2) → (3,3) → (4,4)。

示例 4:

输入: grid = [[1]]
输出: 1
解释:
最长的 V 形对角线段长度为 1,路径如下:(0,0)。

说明:

  • n == grid.length
  • m == grid[i].length
  • 1 <= n, m <= 500
  • grid[i][j] 的值为 0、1 或 2。

思路

代码

性能

3000.对角线最长的矩形的面积

目标

给你一个下标从 0 开始的二维整数数组 dimensions。

对于所有下标 i (0 <= i < dimensions.length),dimensions[i][0] 表示矩形 i 的长度,而 dimensions[i][1] 表示矩形 i 的宽度。

返回对角线最 长 的矩形的 面积 。如果存在多个对角线长度相同的矩形,返回面积最 大 的矩形的面积。

示例 1:

输入:dimensions = [[9,3],[8,6]]
输出:48
解释:
下标 = 0,长度 = 9,宽度 = 3。对角线长度 = sqrt(9 * 9 + 3 * 3) = sqrt(90) ≈ 9.487。
下标 = 1,长度 = 8,宽度 = 6。对角线长度 = sqrt(8 * 8 + 6 * 6) = sqrt(100) = 10。
因此,下标为 1 的矩形对角线更长,所以返回面积 = 8 * 6 = 48。

示例 2:

输入:dimensions = [[3,4],[4,3]]
输出:12
解释:两个矩形的对角线长度相同,为 5,所以最大面积 = 12。

说明:

  • 1 <= dimensions.length <= 100
  • dimensions[i].length == 2
  • 1 <= dimensions[i][0], dimensions[i][1] <= 100

思路

依题意模拟即可。

代码


/**
 * @date 2025-08-26 8:45
 */
public class AreaOfMaxDiagonal3000 {

    /**
     * 网友题解
     */
    class Solution {
        public int areaOfMaxDiagonal(int[][] dimensions) {
            int ans = 0, maxL = 0;
            for (int[] d : dimensions) {
                int x = d[0], y = d[1];
                int l = x * x + y * y;
                if (l > maxL || l == maxL && x * y > ans) {
                    maxL = l;
                    ans = x * y;
                }
            }
            return ans;
        }
    }

    /**
     * 执行通过
     */
    public int areaOfMaxDiagonal(int[][] dimensions) {
        int res = 0;
        int diagonal = 0;
        for (int[] dimension : dimensions) {
            int length = dimension[0];
            int width = dimension[1];
            int cur = length * length + width * width;
            if (diagonal < cur) {
                res = length * width;
                // 出错点:不要忘记更新 diagonal
                diagonal = cur;
            } else if (diagonal == cur) {
                // 出错点:对角线相等需要分开处理,取面积的最大值
                res = Math.max(res, length * width);
            }
        }
        return res;
    }

}

性能

498.对角线遍历

目标

给你一个大小为 m x n 的矩阵 mat ,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。

示例 1:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,4,7,5,3,6,8,9]

示例 2:

输入:mat = [[1,2],[3,4]]
输出:[1,2,3,4]

说明:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 10^4
  • 1 <= m * n <= 10^4
  • -10^5 <= mat[i][j] <= 10^5

思路

按照左上、右下、左上、右下…… 的顺序枚举矩阵的对角线。

m = 4, n = 3

 1  2   3 (k)
↗ ↙ ↗
↙ ↗ ↙ 4
↗ ↙ ↗ 5
↙ ↗ ↙ 6

(0, 0) (0, 1) (0, 2)
(1, 0) (1, 1) (1, 2)
(2, 0) (2, 1) (2, 2)
(3, 0) (3, 1) (3, 2)

定义 k - 1 = i + j, 可得 j = k - 1 - i

  • i = 0 时,j 取得最大值 k - 1,由于 j <= n - 1,因此 maxJ = Math.min(k - 1, n - 1)
  • i = m - 1 时,j 取得最小值 k - m,由于 j >= 0,因此 minJ = Math.max(k - m, 0)

代码


/**
 * @date 2025-08-25 8:51
 */
public class FindDiagonalOrder498 {

    public int[] findDiagonalOrder(int[][] mat) {
        int m = mat.length;
        int n = mat[0].length;
        int l = m + n - 1;
        int[] res = new int[m * n];
        int p = 0;
        for (int k = 1; k <= l; k++) {
            int minJ = Math.max(0, k - m);
            int maxJ = Math.min(k - 1, n - 1);
            if (k % 2 == 0) {
                for (int j = maxJ; j >= minJ; j--) {
                    res[p++] = mat[k - 1 - j][j];
                }
            } else {
                for (int j = minJ; j <= maxJ; j++) {
                    res[p++] = mat[k - 1 - j][j];
                }
            }
        }
        return res;
    }

}

性能

1493.删掉一个元素以后全为1的最长子数组

目标

给你一个二进制数组 nums ,你需要从中删掉一个元素。

请你在删掉元素的结果数组中,返回最长的且只包含 1 的非空子数组的长度。

如果不存在这样的子数组,请返回 0 。

示例 1:

输入:nums = [1,1,0,1]
输出:3
解释:删掉位置 2 的数后,[1,1,1] 包含 3 个 1 。

示例 2:

输入:nums = [0,1,1,1,0,1,1,0,1]
输出:5
解释:删掉位置 4 的数字后,[0,1,1,1,1,1,0,1] 的最长全 1 子数组为 [1,1,1,1,1] 。

示例 3:

输入:nums = [1,1,1]
输出:2
解释:你必须要删除一个元素。

说明:

  • 1 <= nums.length <= 10^5
  • nums[i] 要么是 0 要么是 1 。

思路

有一个二进制数组 nums,从中删除一个元素,求剩余元素中连续的 1 的最大长度。

计算从当前下标为起点的连续 1 的结束下标,end - start 表示连续 1 的长度,允许删掉一个元素可以直接加上 以 end + 1 为起点的连续 1 的个数。

更优的解法是使用滑动窗口计算最长子数组长度,要求窗口内部至多一个 0

代码


/**
 * @date 2025-08-24 12:20
 */
public class LongestSubarray1493 {

    public int longestSubarray(int[] nums) {
        int n = nums.length;
        int res = 0;
        int i = 0;
        while (i < n) {
            int start = i;
            while (i < n && nums[i] == 1) {
                i++;
            }
            for (int j = start; j < i; j++) {
                nums[j] = i;
            }
            if (i == start) {
                nums[i] = i;
                i++;
            }
        }
        for (int j = 0; j < n; j++) {
            res = Math.max(res, nums[j] - j + (nums[j] < n - 1 ? nums[nums[j] + 1] - nums[j] - 1 : 0));
        }
        return res == n ? n - 1 : res;
    }

}

性能

3197.包含所有1的最小矩形面积II

目标

给你一个二维 二进制 数组 grid。你需要找到 3 个 不重叠、面积 非零 、边在水平方向和竖直方向上的矩形,并且满足 grid 中所有的 1 都在这些矩形的内部。

返回这些矩形面积之和的 最小 可能值。

注意,这些矩形可以相接。

示例 1:

输入: grid = [[1,0,1],[1,1,1]]
输出: 5
解释:
位于 (0, 0) 和 (1, 0) 的 1 被一个面积为 2 的矩形覆盖。
位于 (0, 2) 和 (1, 2) 的 1 被一个面积为 2 的矩形覆盖。
位于 (1, 1) 的 1 被一个面积为 1 的矩形覆盖。

示例 2:

输入: grid = [[1,0,1,0],[0,1,0,1]]
输出: 5
解释:
位于 (0, 0) 和 (0, 2) 的 1 被一个面积为 3 的矩形覆盖。
位于 (1, 1) 的 1 被一个面积为 1 的矩形覆盖。
位于 (1, 3) 的 1 被一个面积为 1 的矩形覆盖。

说明:

  • 1 <= grid.length, grid[i].length <= 30
  • grid[i][j] 是 0 或 1。
  • 输入保证 grid 中至少有三个 1 。

思路

代码

性能

3195.包含所有1的最小矩形面积I

目标

给你一个二维 二进制 数组 grid。请你找出一个边在水平方向和竖直方向上、面积 最小 的矩形,并且满足 grid 中所有的 1 都在矩形的内部。

返回这个矩形可能的 最小 面积。

示例 1:

输入: grid = [[0,1,0],[1,0,1]]
输出: 6
解释:
这个最小矩形的高度为 2,宽度为 3,因此面积为 2 * 3 = 6。

示例 2:

输入: grid = [[0,0],[1,0]]
输出: 1
解释:
这个最小矩形的高度和宽度都是 1,因此面积为 1 * 1 = 1。

说明:

  • 1 <= grid.length, grid[i].length <= 1000
  • grid[i][j] 是 0 或 1。
  • 输入保证 grid 中至少有一个 1 。

思路

已知一个二维 二进制数组,找出包含矩阵中所有 1 的矩阵的最小面积。

找到 1 的横纵坐标的上下界即可。

代码


/**
 * @date 2025-08-22 10:08
 */
public class MinimumArea3195 {

    public int minimumArea(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int rowMin = m - 1, rowMax = 0;
        int colMin = n - 1, colMax = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (grid[i][j] == 1) {
                    rowMin = Math.min(rowMin, i);
                    rowMax = Math.max(rowMax, i);
                    colMin = Math.min(colMin, j);
                    colMax = Math.max(colMax, j);
                }
            }
        }
        return (rowMax - rowMin + 1) * (colMax - colMin + 1);
    }

}

性能

1504.统计全1子矩形

目标

给你一个 m x n 的二进制矩阵 mat ,请你返回有多少个 子矩形 的元素全部都是 1 。

示例 1:

输入:mat = [[1,0,1],[1,1,0],[1,1,0]]
输出:13
解释:
有 6 个 1x1 的矩形。
有 2 个 1x2 的矩形。
有 3 个 2x1 的矩形。
有 1 个 2x2 的矩形。
有 1 个 3x1 的矩形。
矩形数目总共 = 6 + 2 + 3 + 1 + 1 = 13 。

示例 2:

输入:mat = [[0,1,1,0],[0,1,1,1],[1,1,1,0]]
输出:24
解释:
有 8 个 1x1 的子矩形。
有 5 个 1x2 的子矩形。
有 2 个 1x3 的子矩形。
有 4 个 2x1 的子矩形。
有 2 个 2x2 的子矩形。
有 2 个 3x1 的子矩形。
有 1 个 3x2 的子矩形。
矩形数目总共 = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24 。

说明:

  • 1 <= m, n <= 150
  • mat[i][j] 仅包含 0 或 1

思路

返回 m x n 矩阵的全 1 子矩阵个数。

枚举行的上下界,计算高度 h,将纵向的 1 压缩到一行,计算全 h 子数组的数目(参考 2348.全0子数组的数目)。

代码


/**
 * @date 2025-08-21 8:48
 */
public class NumSubmat1504 {

    public int numSubmat(int[][] mat) {
        int m = mat.length;
        int n = mat[0].length;
        int res = 0;
        for (int u = 0; u < m; u++) {
            for (int l = u; l < m; l++) {
                int h = l - u + 1;
                int[] row = new int[n];
                for (int i = u; i <= l; i++) {
                    for (int j = 0; j < n; j++) {
                        row[j] += mat[i][j];
                    }
                }
                int p = 0;
                while (p < n) {
                    if (row[p] != h) {
                        p++;
                        continue;
                    }
                    int start = p;
                    while (p < n && row[p] == h) {
                        p++;
                    }
                    int cnt = p - start;
                    res += (cnt + 1) * cnt / 2;
                }
            }
        }
        return res;
    }

}

性能

1277.统计全为1的正方形子矩阵

目标

给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。

示例 1:

输入:matrix =
[
  [0,1,1,1],
  [1,1,1,1],
  [0,1,1,1]
]
输出:15
解释: 
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.

示例 2:

输入:matrix = 
[
  [1,0,1],
  [1,1,0],
  [1,1,0]
]
输出:7
解释:
边长为 1 的正方形有 6 个。 
边长为 2 的正方形有 1 个。
正方形的总数 = 6 + 1 = 7.

说明:

  • 1 <= arr.length <= 300
  • 1 <= arr[0].length <= 300
  • 0 <= arr[i][j] <= 1

思路

统计 m x n 矩阵中 全是 1 的正方形子矩阵个数。

遍历的逻辑是枚举长度,以左上顶点为圆心,长度为半径进行遍历。

代码


/**
 * @date 2025-08-20 8:44
 */
public class CountSquares1277 {

    public int countSquares(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int res = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] != 1) {
                    continue;
                }
                int max = Math.min(m - i, n - j);
                int l = 1;
                here:
                for (; l < max; l++) {
                    for (int y = i + l; y >= i; y--) {
                        if (matrix[y][j + l] == 0) {
                            break here;
                        }
                    }
                    for (int x = j + l; x >= j; x--) {
                        if (matrix[i + l][x] == 0) {
                            break here;
                        }
                    }
                }
                res += l;
            }
        }
        return res;
    }

}

性能

2348.全0子数组的数目

目标

给你一个整数数组 nums ,返回全部为 0 的 子数组 数目。

子数组 是一个数组中一段连续非空元素组成的序列。

示例 1:

输入:nums = [1,3,0,0,2,0,0,4]
输出:6
解释:
子数组 [0] 出现了 4 次。
子数组 [0,0] 出现了 2 次。
不存在长度大于 2 的全 0 子数组,所以我们返回 6 。

示例 2:

输入:nums = [0,0,0,2,0,0]
输出:9
解释:
子数组 [0] 出现了 5 次。
子数组 [0,0] 出现了 3 次。
子数组 [0,0,0] 出现了 1 次。
不存在长度大于 3 的全 0 子数组,所以我们返回 9 。

示例 3:

输入:nums = [2,10,2019]
输出:0
解释:没有全 0 子数组,所以我们返回 0 。

说明:

  • 1 <= nums.length <= 10^5
  • -10^9 <= nums[i] <= 10^9

思路

返回数组的全 0 子数组个数。

长度为 k 的子数组个数为 (1 + k) * k / 2。可以使用贪心策略,如果当前元素是 0 找到以它为起点的最长连续 0 数组,计算子数组个数。

代码


/**
 * @date 2025-08-19 8:54
 */
public class ZeroFilledSubarray2348 {

    public long zeroFilledSubarray(int[] nums) {
        long res = 0L;
        int n = nums.length;
        int i = 0;
        while (i < n){
            if (nums[i] != 0){
                i++;
                continue;
            }
            int start = i;
            while (i < n && nums[i] == 0){
                i++;
            }
            int cnt = i - start;
            res += (1L + cnt) * cnt / 2;
        }

        return res;
    }
}

性能

679.24点游戏

目标

给定一个长度为 4 的整数数组 cards 。你有 4 张卡片,每张卡片上都包含一个范围在 [1,9] 的数字。您应该使用运算符 ['+', '-', '*', '/'] 和括号 '(' 和 ')' 将这些卡片上的数字排列成数学表达式,以获得值 24。

你须遵守以下规则:

  • 除法运算符 '/' 表示实数除法,而不是整数除法。
    • 例如, 4 /(1 - 2 / 3)= 4 /(1 / 3)= 12 。
  • 每个运算都在两个数字之间。特别是,不能使用 “-” 作为一元运算符。
    • 例如,如果 cards =[1,1,1,1] ,则表达式 “-1 -1 -1 -1” 是 不允许 的。
  • 你不能把数字串在一起
    • 例如,如果 cards =[1,2,1,2] ,则表达式 “12 + 12” 无效。

如果可以得到这样的表达式,其计算结果为 24 ,则返回 true ,否则返回 false 。

示例 1:

输入: cards = [4, 1, 8, 7]
输出: true
解释: (8-4) * (7-1) = 24

示例 2:

输入: cards = [1, 2, 1, 2]
输出: false

提示:

  • cards.length == 4
  • 1 <= cards[i] <= 9

思路

代码

性能