2942.查找包含给定字符的单词

目标

给你一个下标从 0 开始的字符串数组 words 和一个字符 x 。

请你返回一个 下标数组,表示下标在数组中对应的单词包含字符 x 。

注意,返回的数组可以是 任意 顺序。

示例 1:

输入:words = ["leet","code"], x = "e"
输出:[0,1]
解释:"e" 在两个单词中都出现了:"leet" 和 "code" 。所以我们返回下标 0 和 1 。

示例 2:

输入:words = ["abc","bcd","aaaa","cbc"], x = "a"
输出:[0,2]
解释:"a" 在 "abc" 和 "aaaa" 中出现了,所以我们返回下标 0 和 2 。

示例 3:

输入:words = ["abc","bcd","aaaa","cbc"], x = "z"
输出:[]
解释:"z" 没有在任何单词中出现。所以我们返回空数组。

提示:

  • 1 <= words.length <= 50
  • 1 <= words[i].length <= 50
  • x 是一个小写英文字母。
  • words[i] 只包含小写英文字母。

思路

返回字符串数组中包含给定字符的下标。

代码


/**
 * @date 2025-05-24 10:09
 */
public class FindWordsContaining2942 {

    public List<Integer> findWordsContaining(String[] words, char x) {
        List<Integer> res = new ArrayList<>(words.length);
        for (int i = 0; i < words.length; i++) {
            String word = words[i];
            for (int j = 0; j < word.length(); j++) {
                if (word.charAt(j) == x) {
                    res.add(i);
                    break;
                }
            }
        }
        return res;
    }

}

性能

3068.最大节点价值之和

目标

给你一棵 n 个节点的 无向 树,节点从 0 到 n - 1 编号。树以长度为 n - 1 下标从 0 开始的二维整数数组 edges 的形式给你,其中 edges[i] = [ui, vi] 表示树中节点 ui 和 vi 之间有一条边。同时给你一个 正 整数 k 和一个长度为 n 下标从 0 开始的 非负 整数数组 nums ,其中 nums[i] 表示节点 i 的 价值 。

Alice 想 最大化 树中所有节点价值之和。为了实现这一目标,Alice 可以执行以下操作 任意 次(包括 0 次):

  • 选择连接节点 u 和 v 的边 [u, v] ,并将它们的值更新为:
    • nums[u] = nums[u] XOR k
    • nums[v] = nums[v] XOR k

请你返回 Alice 通过执行以上操作 任意次 后,可以得到所有节点 价值之和 的 最大值 。

示例 1:

输入:nums = [1,2,1], k = 3, edges = [[0,1],[0,2]]
输出:6
解释:Alice 可以通过一次操作得到最大价值和 6 :
- 选择边 [0,2] 。nums[0] 和 nums[2] 都变为:1 XOR 3 = 2 ,数组 nums 变为:[1,2,1] -> [2,2,2] 。
所有节点价值之和为 2 + 2 + 2 = 6 。
6 是可以得到最大的价值之和。

示例 2:

输入:nums = [2,3], k = 7, edges = [[0,1]]
输出:9
解释:Alice 可以通过一次操作得到最大和 9 :
- 选择边 [0,1] 。nums[0] 变为:2 XOR 7 = 5 ,nums[1] 变为:3 XOR 7 = 4 ,数组 nums 变为:[2,3] -> [5,4] 。
所有节点价值之和为 5 + 4 = 9 。
9 是可以得到最大的价值之和。

示例 3:

输入:nums = [7,7,7,7,7,7], k = 3, edges = [[0,1],[0,2],[0,3],[0,4],[0,5]]
输出:42
解释:Alice 不需要执行任何操作,就可以得到最大价值之和 42 。

说明:

  • 2 <= n == nums.length <= 2 * 10^4
  • 1 <= k <= 10^9
  • 0 <= nums[i] <= 10^9
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= edges[i][0], edges[i][1] <= n - 1
  • 输入保证 edges 构成一棵合法的树。

思路

// todo

代码

性能

3362.零数组变换III

目标

给你一个长度为 n 的整数数组 nums 和一个二维数组 queries ,其中 queries[i] = [li, ri] 。

每一个 queries[i] 表示对于 nums 的以下操作:

  • 将 nums 中下标在范围 [li, ri] 之间的每一个元素 最多 减少 1 。
  • 坐标范围内每一个元素减少的值相互 独立 。

零数组 指的是一个数组里所有元素都等于 0 。

请你返回 最多 可以从 queries 中删除多少个元素,使得 queries 中剩下的元素仍然能将 nums 变为一个 零数组 。如果无法将 nums 变为一个 零数组 ,返回 -1 。

示例 1:

输入:nums = [2,0,2], queries = [[0,2],[0,2],[1,1]]
输出:1
解释:
删除 queries[2] 后,nums 仍然可以变为零数组。
对于 queries[0] ,将 nums[0] 和 nums[2] 减少 1 ,将 nums[1] 减少 0 。
对于 queries[1] ,将 nums[0] 和 nums[2] 减少 1 ,将 nums[1] 减少 0 。

示例 2:

输入:nums = [1,1,1,1], queries = [[1,3],[0,2],[1,3],[1,2]]
输出:2
解释:
可以删除 queries[2] 和 queries[3] 。

示例 3:

输入:nums = [1,2,3,4], queries = [[0,3]]
输出:-1
解释:
nums 无法通过 queries 变成零数组。

说明:

  • 1 <= nums.length <= 10^5
  • 0 <= nums[i] <= 10^5
  • 1 <= queries.length <= 10^5
  • queries[i].length == 2
  • 0 <= li <= ri < nums.length

思路

有一个长度为 n 的整数数组,每一次操作可以将给定范围内的任意元素减 1,返回最多可以删掉多少个操作,使得剩下的操作能够将数组中的所有元素变为 0

对于元素 nums[0] 要将其变为 0 必须要操作 nums[0] 次,且操作范围必须包括 0,因此可以按照操作范围的左端点排序,每次选择右端点最远即覆盖最广的操作区间。可以维护一个由大到小的优先队列,从操作中选出左端点小于等于当前下标的操作,将其右端点放入队列。从队列中取出右端点大于等于当前下标的操作,使用差分数组进行区间修改。

代码


/**
 * @date 2025-05-22 23:02
 */
public class MaxRemoval3362 {

    public int maxRemoval(int[] nums, int[][] queries) {
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a);
        Arrays.sort(queries, (a, b) -> a[0] - b[0]);
        int n = nums.length;
        int[] diff = new int[n + 1];
        diff[0] = nums[0];
        for (int i = 1; i < n; i++) {
            diff[i] = nums[i] - nums[i - 1];
        }
        int num = 0;
        int k = 0;
        for (int i = 0; i < n; i++) {
            num += diff[i];
            while (k < queries.length && queries[k][0] <= i) {
                q.offer(queries[k++][1]);
            }
            while (!q.isEmpty() && q.peek() >= i && num > 0) {
                diff[q.poll() + 1]++;
                num--;
            }
            if (num > 0) {
                return -1;
            }
        }
        return q.size();
    }

}

性能

3356.零数组变换II

目标

给你一个长度为 n 的整数数组 nums 和一个二维数组 queries,其中 queries[i] = [li, ri, vali]。

每个 queries[i] 表示在 nums 上执行以下操作:

  • 将 nums 中 [li, ri] 范围内的每个下标对应元素的值 最多 减少 vali。
  • 每个下标的减少的数值可以独立选择。

零数组 是指所有元素都等于 0 的数组。

返回 k 可以取到的 最小非负 值,使得在 顺序 处理前 k 个查询后,nums 变成 零数组。如果不存在这样的 k,则返回 -1。

示例 1:

输入: nums = [2,0,2], queries = [[0,2,1],[0,2,1],[1,1,3]]
输出: 2
解释:
对于 i = 0(l = 0, r = 2, val = 1):
在下标 [0, 1, 2] 处分别减少 [1, 0, 1]。
数组将变为 [1, 0, 1]。
对于 i = 1(l = 0, r = 2, val = 1):
在下标 [0, 1, 2] 处分别减少 [1, 0, 1]。
数组将变为 [0, 0, 0],这是一个零数组。因此,k 的最小值为 2。

示例 2:

输入: nums = [4,3,2,1], queries = [[1,3,2],[0,2,1]]
输出: -1
解释:
对于 i = 0(l = 1, r = 3, val = 2):
在下标 [1, 2, 3] 处分别减少 [2, 2, 1]。
数组将变为 [4, 1, 0, 0]。
对于 i = 1(l = 0, r = 2, val = 1):
在下标 [0, 1, 2] 处分别减少 [1, 1, 0]。
数组将变为 [3, 0, 0, 0],这不是一个零数组。

提示:

  • 1 <= nums.length <= 10^5
  • 0 <= nums[i] <= 5 * 10^5
  • 1 <= queries.length <= 10^5
  • queries[i].length == 3
  • 0 <= li <= ri < nums.length
  • 1 <= vali <= 5

思路

有一个长度为 n 的整数数组,每一次操作可以将给定范围内的任意元素 最多 减去 vali = queries[2],计算将数组中的所有元素变为 0 最少需要按顺序操作几次。

3355.零数组变换I 相比,求的是最小操作次数,每一次操作都需要判断数组元素是否全为 0,涉及到区间修改与区间查询,可以使用线段树维护区间最大值,每次操作后判断最大值是否大于 0

官网给出了另一种思路,二分查找操作次数 k,针对每一个 k 问题变成 3355.零数组变换I

代码


/**
 * @date 2025-05-21 9:35
 */
public class MinZeroArray3356 {

    public int minZeroArray(int[] nums, int[][] queries) {
        int right = queries.length - 1;
        int left = -1;
        int mid = left + (right - left) / 2;
        while (left <= right) {
            if (check(nums, mid, queries)) {
                right = mid - 1;
            } else {
                left = mid + 1;
            }
            mid = left + (right - left) / 2;
        }
        return left == queries.length ? -1 : left + 1;
    }

    public boolean check(int[] nums, int k, int[][] queries) {
        int n = nums.length;
        int[] diff = new int[n + 1];
        diff[0] = nums[0];
        for (int i = 1; i < n; i++) {
            diff[i] = nums[i] - nums[i - 1];
        }
        for (int i = 0; i <= k; i++) {
            int[] query = queries[i];
            int val = query[2];
            diff[query[0]] -= val;
            diff[query[1] + 1] += val;
        }
        int num = 0;
        for (int i = 0; i < n; i++) {
            num += diff[i];
            if (num > 0) {
                return false;
            }
        }
        return true;
    }

}

性能

3355.零数组变换I

目标

给定一个长度为 n 的整数数组 nums 和一个二维数组 queries,其中 queries[i] = [li, ri]。

对于每个查询 queries[i]:

  • 在 nums 的下标范围 [li, ri] 内选择一个下标 子集。
  • 将选中的每个下标对应的元素值减 1。

零数组 是指所有元素都等于 0 的数组。

如果在按顺序处理所有查询后,可以将 nums 转换为 零数组 ,则返回 true,否则返回 false。

示例 1:

输入: nums = [1,0,1], queries = [[0,2]]
输出: true
解释:
对于 i = 0:
选择下标子集 [0, 2] 并将这些下标处的值减 1。
数组将变为 [0, 0, 0],这是一个零数组。

示例 2:

输入: nums = [4,3,2,1], queries = [[1,3],[0,2]]
输出: false
解释:
对于 i = 0: 
选择下标子集 [1, 2, 3] 并将这些下标处的值减 1。
数组将变为 [4, 2, 1, 0]。
对于 i = 1:
选择下标子集 [0, 1, 2] 并将这些下标处的值减 1。
数组将变为 [3, 1, 0, 0],这不是一个零数组。

说明:

  • 1 <= nums.length <= 10^5
  • 0 <= nums[i] <= 10^5
  • 1 <= queries.length <= 10^5
  • queries[i].length == 2
  • 0 <= li <= ri < nums.length

思路

有一个长度为 n 的整数数组,每一次操作可以将给定范围内的任意元素减 1,判断操作完成后能否将数组中的所有元素变为 0

使用差分数组批量修改元素,最后判断是否存在元素大于 0 即可。

代码


/**
 * @date 2025-05-20 9:37
 */
public class IsZeroArray3355 {

    public boolean isZeroArray(int[] nums, int[][] queries) {
        int n = nums.length;
        int[] diff = new int[n + 1];
        diff[0] = nums[0];
        for (int i = 1; i < n; i++) {
            diff[i] = nums[i] - nums[i - 1];
        }
        for (int[] query : queries) {
            diff[query[0]] -= 1;
            diff[query[1] + 1] += 1;
        }
        int num = 0;
        for (int i = 0; i < n; i++) {
            num += diff[i];
            if (num > 0) {
                return false;
            }
        }
        return true;
    }

}

性能

3024.三角形类型

目标

给你一个下标从 0 开始长度为 3 的整数数组 nums ,需要用它们来构造三角形。

  • 如果一个三角形的所有边长度相等,那么这个三角形称为 equilateral 。
  • 如果一个三角形恰好有两条边长度相等,那么这个三角形称为 isosceles 。
  • 如果一个三角形三条边的长度互不相同,那么这个三角形称为 scalene 。

如果这个数组无法构成一个三角形,请你返回字符串 "none" ,否则返回一个字符串表示这个三角形的类型。

示例 1:

输入:nums = [3,3,3]
输出:"equilateral"
解释:由于三条边长度相等,所以可以构成一个等边三角形,返回 "equilateral" 。

示例 2:

输入:nums = [3,4,5]
输出:"scalene"
解释:
nums[0] + nums[1] = 3 + 4 = 7 ,大于 nums[2] = 5 。
nums[0] + nums[2] = 3 + 5 = 8 ,大于 nums[1] = 4 。
nums[1] + nums[2] = 4 + 5 = 9 ,大于 nums[0] = 3 。
由于任意两边之和都大于第三边,所以可以构成一个三角形,因为三条边的长度互不相等,所以返回 "scalene"。

说明:

  • nums.length == 3
  • 1 <= nums[i] <= 100

思路

已知三角形的三条边的长度,判断三角形的类型。

将数组 nums 排序,判断 nums[2] < nums[0] + nums[1] 如果不满足返回 none,如果 nums[0] == nums[2] 返回 equilateral,如果 nums[0] == nums[1] || nums[1] == nums[2] 返回 isosceles,否则返回 scalene

代码


/**
 * @date 2025-05-19 8:47
 */
public class TriangleType3024 {

    public String triangleType(int[] nums) {
        Arrays.sort(nums);
        if (nums[0] + nums[1] <= nums[2]) {
            return "none";
        }
        if (nums[0] == nums[2]) {
            return "equilateral";
        } else if (nums[0] == nums[1] || nums[1] == nums[2]) {
            return "isosceles";
        } else {
            return "scalene";
        }
    }

}

性能

1931.用三种不同颜色为网格涂色

目标

给你两个整数 m 和 n 。构造一个 m x n 的网格,其中每个单元格最开始是白色。请你用 红、绿、蓝 三种颜色为每个单元格涂色。所有单元格都需要被涂色。

涂色方案需要满足:不存在相邻两个单元格颜色相同的情况 。返回网格涂色的方法数。因为答案可能非常大, 返回 对 10^9 + 7 取余 的结果。

示例 1:

输入:m = 1, n = 1
输出:3
解释:如上图所示,存在三种可能的涂色方案。

示例 2:

输入:m = 1, n = 2
输出:6
解释:如上图所示,存在六种可能的涂色方案。

示例 3:

输入:m = 5, n = 5
输出:580986

说明:

  • 1 <= m <= 5
  • 1 <= n <= 1000

思路

// todo 状压DP

代码

性能

75.颜色分类

目标

给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地 对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。

我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。

必须在不使用库内置的 sort 函数的情况下解决这个问题。

示例 1:

输入:nums = [2,0,2,1,1,0]
输出:[0,0,1,1,2,2]

示例 2:

输入:nums = [2,0,1]
输出:[0,1,2]

说明:

  • n == nums.length
  • 1 <= n <= 300
  • nums[i] 为 0、1 或 2

进阶:

  • 你能想出一个仅使用常数空间的一趟扫描算法吗?

思路

给定一个仅包含 012 的数组,对其进行原地排序,使得相同数值的元素集中在一起,并且顺序是 0 1 2

荷兰国旗问题。

代码


/**
 * @date 2025-05-17 15:35
 */
public class SortColors75 {

    public void sortColors(int[] nums) {
        int n = nums.length;
        int pivot = 1;
        int a = 0, i = 0, b = n - 1;
        while (i <= b) {
            if (nums[i] < pivot) {
                swap(nums, a, i);
                a++;
                i++;
            } else if (nums[i] > pivot) {
                swap(nums, i, b);
                b--;
            } else {
                i++;
            }
        }
    }

    public void swap(int[] nums, int i, int j) {
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }

}

性能

2901.最长相邻不相等子序列II

目标

给你一个整数 n 和一个下标从 0 开始的字符串数组 words ,和一个下标从 0 开始的数组 groups ,两个数组长度都是 n 。

两个长度相等字符串的 汉明距离 定义为对应位置字符 不同 的数目。

你需要从下标 [0, 1, ..., n - 1] 中选出一个 最长子序列 ,将这个子序列记作长度为 k 的 [i0, i1, ..., ik - 1] ,它需要满足以下条件:

  • 相邻 下标对应的 groups 值 不同。即,对于所有满足 0 < j + 1 < k 的 j 都有 groups[ij] != groups[ij + 1] 。
  • 对于所有 0 < j + 1 < k 的下标 j ,都满足 words[ij] 和 words[ij + 1] 的长度 相等 ,且两个字符串之间的 汉明距离 为 1 。

请你返回一个字符串数组,它是下标子序列 依次 对应 words 数组中的字符串连接形成的字符串数组。如果有多个答案,返回任意一个。

子序列 指的是从原数组中删掉一些(也可能一个也不删掉)元素,剩余元素不改变相对位置得到的新的数组。

注意:words 中的字符串长度可能 不相等 。

示例 1:

输入:n = 3, words = ["bab","dab","cab"], groups = [1,2,2]
输出:["bab","cab"]
解释:一个可行的子序列是 [0,2] 。
- groups[0] != groups[2]
- words[0].length == words[2].length 且它们之间的汉明距离为 1 。
所以一个可行的答案是 [words[0],words[2]] = ["bab","cab"] 。
另一个可行的子序列是 [0,1] 。
- groups[0] != groups[1]
- words[0].length = words[1].length 且它们之间的汉明距离为 1 。
所以另一个可行的答案是 [words[0],words[1]] = ["bab","dab"] 。
符合题意的最长子序列的长度为 2 。

示例 2:

输入:n = 4, words = ["a","b","c","d"], groups = [1,2,3,4]
输出:["a","b","c","d"]
解释:我们选择子序列 [0,1,2,3] 。
它同时满足两个条件。
所以答案为 [words[0],words[1],words[2],words[3]] = ["a","b","c","d"] 。
它是所有下标子序列里最长且满足所有条件的。
所以它是唯一的答案。

说明:

  • 1 <= n == words.length == groups.length <= 1000
  • 1 <= words[i].length <= 10
  • 1 <= groups[i] <= n
  • words 中的字符串 互不相同 。
  • words[i] 只包含小写英文字母。

思路

有一个长度为 n 的字符串数组 words,其中的字符串互不相同,同时它对应一个相同长度的二进制数组 groups,从二进制数组中找出一个相邻元素不同且汉明距离为 1 的最长子序列,并返回其在 words 中对应的子序列。

2900.最长相邻不相等子序列I 相比增加了一个限制条件,判断汉明距离是否为 1

代码


/**
 * @date 2025-05-15 11:15
 */
public class GetWordsInLongestSubsequence2901 {

    public List<String> getWordsInLongestSubsequence(String[] words, int[] groups) {
        List<String> res = new ArrayList<>();
        int n = words.length;
        List<String>[] dp = new ArrayList[n];
        Arrays.setAll(dp, x -> new ArrayList<>());
        // 出错点:注意必须要初始化
        for (int i = 0; i < dp.length; i++) {
            dp[i].add(words[i]);
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < i; j++) {
                if (groups[i] != groups[j] && check(words[i], words[j])) {
                    if (dp[j].size() >= dp[i].size()) {
                        dp[i] = new ArrayList<>(dp[j]);
                        dp[i].add(words[i]);
                    }
                }
            }
        }
        for (List<String> list : dp) {
            if (list.size() > res.size()) {
                res = list;
            }
        }
        return res;
    }

    public boolean check(String word1, String word2) {
        if (word1.length() != word2.length()) {
            return false;
        }
        int cnt = 0;
        int n = word1.length();
        for (int i = 0; i < n; i++) {
            if (cnt > 1) {
                return false;
            }
            if (word1.charAt(i) != word2.charAt(i)) {
                cnt++;
            }
        }
        return cnt == 1;
    }

}

性能

2900.最长相邻不相等子序列I

目标

给你一个下标从 0 开始的字符串数组 words ,和一个下标从 0 开始的 二进制 数组 groups ,两个数组长度都是 n 。

你需要从 words 中选出 最长子序列。如果对于序列中的任何两个连续串,二进制数组 groups 中它们的对应元素不同,则 words 的子序列是不同的。

正式来说,你需要从下标 [0, 1, ..., n - 1] 中选出一个 最长子序列 ,将这个子序列记作长度为 k 的 [i0, i1, ..., ik - 1] ,对于所有满足 0 <= j < k - 1 的 j 都有 groups[ij] != groups[ij + 1] 。

请你返回一个字符串数组,它是下标子序列 依次 对应 words 数组中的字符串连接形成的字符串数组。如果有多个答案,返回 任意 一个。

注意:words 中的元素是不同的 。

示例 1:

输入:words = ["e","a","b"], groups = [0,0,1]
输出:["e","b"]
解释:一个可行的子序列是 [0,2] ,因为 groups[0] != groups[2] 。
所以一个可行的答案是 [words[0],words[2]] = ["e","b"] 。
另一个可行的子序列是 [1,2] ,因为 groups[1] != groups[2] 。
得到答案为 [words[1],words[2]] = ["a","b"] 。
这也是一个可行的答案。
符合题意的最长子序列的长度为 2 。

示例 2:

输入:words = ["a","b","c","d"], groups = [1,0,1,1]
输出:["a","b","c"]
解释:一个可行的子序列为 [0,1,2] 因为 groups[0] != groups[1] 且 groups[1] != groups[2] 。
所以一个可行的答案是 [words[0],words[1],words[2]] = ["a","b","c"] 。
另一个可行的子序列为 [0,1,3] 因为 groups[0] != groups[1] 且 groups[1] != groups[3] 。
得到答案为 [words[0],words[1],words[3]] = ["a","b","d"] 。
这也是一个可行的答案。
符合题意的最长子序列的长度为 3 。

说明:

  • 1 <= n == words.length == groups.length <= 100
  • 1 <= words[i].length <= 10
  • groups[i] 是 0 或 1。
  • words 中的字符串 互不相同 。
  • words[i] 只包含小写英文字母。

思路

有一个长度为 n 的字符串数组 words,其中的字符串互不相同,同时它对应一个相同长度的二进制数组 groups,从二进制数组中找出一个相邻元素不同的最长子序列,并返回其在 words 中对应的子序列。

如何找相邻元素不同的最长子序列?只需选择所有数组元素,然后将相邻元素相同的元素删掉即可。

代码


/**
 * @date 2025-05-15 8:51
 */
public class GetLongestSubsequence2900 {

    public List<String> getLongestSubsequence(String[] words, int[] groups) {
        List<String> res = new ArrayList<>();
        int prev = 0;
        int n = words.length;
        res.add(words[0]);
        for (int i = 1; i < n; i++) {
            if (groups[prev] != groups[i]){
                res.add(words[i]);
                prev = i;
            }
        }
        return res;
    }
}

性能