857.雇佣K名工人的最低成本

目标

有 n 名工人。 给定两个数组 quality 和 wage ,其中,quality[i] 表示第 i 名工人的工作质量,其最低期望工资为 wage[i] 。

现在我们想雇佣 k 名工人组成一个工资组。在雇佣 一组 k 名工人时,我们必须按照下述规则向他们支付工资:

  1. 对工资组中的每名工人,应当按其工作质量与同组其他工人的工作质量的比例来支付工资。
  2. 工资组中的每名工人至少应当得到他们的最低期望工资。

给定整数 k ,返回 组成满足上述条件的付费群体所需的最小金额 。在实际答案的 10^-5 以内的答案将被接受。

示例 1:

输入: quality = [10,20,5], wage = [70,50,30], k = 2
输出: 105.00000
解释: 我们向 0 号工人支付 70,向 2 号工人支付 35。

示例 2:

输入: quality = [3,1,10,10,1], wage = [4,8,2,2,7], k = 3
输出: 30.66667
解释: 我们向 0 号工人支付 4,向 2 号和 3 号分别支付 13.33333。

说明:

  • n == quality.length == wage.length
  • 1 <= k <= n <= 10^4
  • 1 <= quality[i], wage[i] <= 10^4

思路

从quality中选k个,按照工作质量比例支付工资,并且每人的工资不能低于wage中的最低期望工资,问雇佣这k个人的最低成本是多少。

// todo

代码

/**
 * @date 2024-05-02 20:44
 */
public class MincostToHireWorkers857 {
    public double mincostToHireWorkers(int[] quality, int[] wage, int k) {
        int n = wage.length;
        PriorityQueue<double[]> wqq = new PriorityQueue<>(Comparator.comparingDouble(x -> x[0]));
        double[][] wq = new double[n][2];
        for (int i = 0; i < wage.length; i++) {
            wq[i][0] = (double) wage[i] / quality[i];
            wq[i][1] = i;
            wqq.offer(wq[i]);
        }
        PriorityQueue<Integer> q = new PriorityQueue<>((x, y) -> y - x);
        int sum = 0;
        int ri = 0;
        for (int i = 0; i < k; i++) {
            double[] choose = wqq.poll();
            int index = (int) choose[1];
            sum += quality[index];
            q.offer(quality[index]);
            ri = (int) choose[1];
        }
        double res = (double) sum * wage[ri] / quality[ri];
        while (!wqq.isEmpty()) {
            double[] choose = wqq.poll();
            int index = (int) choose[1];
            if (q.peek() > quality[index]) {
                sum = sum - q.peek() + quality[index];
                double resTmp = (double)sum * wage[index] / quality[index];
                q.poll();
                q.offer(quality[index]);
                if (res > resTmp) {
                    res = resTmp;
                }
            }
        }
        return res;
    }
}

性能

2462.雇佣K位工人的总代价

目标

给你一个下标从 0 开始的整数数组 costs ,其中 costs[i] 是雇佣第 i 位工人的代价。

同时给你两个整数 k 和 candidates 。我们想根据以下规则恰好雇佣 k 位工人:

  • 总共进行 k 轮雇佣,且每一轮恰好雇佣一位工人。
  • 在每一轮雇佣中,从最前面 candidates 和最后面 candidates 人中选出代价最小的一位工人,如果有多位代价相同且最小的工人,选择下标更小的一位工人。
    • 比方说,costs = [3,2,7,7,1,2] 且 candidates = 2 ,第一轮雇佣中,我们选择第 4 位工人,因为他的代价最小 [3,2,7,7,1,2] 。
    • 第二轮雇佣,我们选择第 1 位工人,因为他们的代价与第 4 位工人一样都是最小代价,而且下标更小,[3,2,7,7,2] 。注意每一轮雇佣后,剩余工人的下标可能会发生变化。
  • 如果剩余员工数目不足 candidates 人,那么下一轮雇佣他们中代价最小的一人,如果有多位代价相同且最小的工人,选择下标更小的一位工人。
  • 一位工人只能被选择一次。

返回雇佣恰好 k 位工人的总代价。

示例 1:

输入:costs = [17,12,10,2,7,2,11,20,8], k = 3, candidates = 4
输出:11
解释:我们总共雇佣 3 位工人。总代价一开始为 0 。
- 第一轮雇佣,我们从 [17,12,10,2,7,2,11,20,8] 中选择。最小代价是 2 ,有两位工人,我们选择下标更小的一位工人,即第 3 位工人。总代价是 0 + 2 = 2 。
- 第二轮雇佣,我们从 [17,12,10,7,2,11,20,8] 中选择。最小代价是 2 ,下标为 4 ,总代价是 2 + 2 = 4 。
- 第三轮雇佣,我们从 [17,12,10,7,11,20,8] 中选择,最小代价是 7 ,下标为 3 ,总代价是 4 + 7 = 11 。注意下标为 3 的工人同时在最前面和最后面 4 位工人中。
总雇佣代价是 11 。

示例 2:

输入:costs = [1,2,4,1], k = 3, candidates = 3
输出:4
解释:我们总共雇佣 3 位工人。总代价一开始为 0 。
- 第一轮雇佣,我们从 [1,2,4,1] 中选择。最小代价为 1 ,有两位工人,我们选择下标更小的一位工人,即第 0 位工人,总代价是 0 + 1 = 1 。注意,下标为 1 和 2 的工人同时在最前面和最后面 3 位工人中。
- 第二轮雇佣,我们从 [2,4,1] 中选择。最小代价为 1 ,下标为 2 ,总代价是 1 + 1 = 2 。
- 第三轮雇佣,少于 3 位工人,我们从剩余工人 [2,4] 中选择。最小代价是 2 ,下标为 0 。总代价为 2 + 2 = 4 。
总雇佣代价是 4 。

说明:

  • 1 <= costs.length <= 10^5
  • 1 <= costs[i] <= 10^5
  • 1 <= k, candidates <= costs.length

思路

给我们一个数组 costs 和一个整数 candidates,每次从数组的前candidates与后candidates中选取值最小的元素,如果最小值相等则取下标最小的,costs中的每个值只能被选一次,求选出的k个元素和。

很直接的想法是使用优先队列保存这些元素,考虑到相同值需要取下标最小的,于是还要保存下标信息。循环从队列取出头元素累加到res,每取出一个元素需要从前/后补一个元素到队列中。

注意题目的数据范围,需要返回long类型。还有就是放队列以及补元素的停止条件以免重复。

代码

/**
 * @date 2024-05-01 17:03
 */
public class TotalCost2462 {
    public long totalCost(int[] costs, int k, int candidates) {
        PriorityQueue<Integer[]> q = new PriorityQueue<>((x, y) -> {
            int compare = x[0] - y[0];
            return compare == 0 ? x[1] - y[1] : compare;
        });
        int n = costs.length;
        int leftPos;
        int rightPos = n - 1;
        for (leftPos = 0; leftPos < candidates; leftPos++) {
            if (leftPos < rightPos) {
                // rightPos 与 leftPos指向的都是需要添加的下一个位置,
                q.offer(new Integer[]{costs[leftPos], leftPos});
                q.offer(new Integer[]{costs[rightPos], rightPos});
                rightPos--;
            }
            else if (leftPos == rightPos) {
                // 这里已经覆盖了数组的所有元素,循环结束后leftPos > rightPos
                q.offer(new Integer[]{costs[leftPos], leftPos});
            }
            else {
                break;
            }
        }
        // 不使用long会溢出
        long res = 0;
        // 选到最小之后,补够candidates
        for (int i = 0; i < k && !q.isEmpty(); i++) {
            Integer[] c = q.poll();
            res += c[0];
            // 如果已经覆盖了所有元素就无需再添加了
            if (leftPos > rightPos) {
                continue;
            }
            if (c[1] < leftPos) {
                q.offer(new Integer[]{costs[leftPos], leftPos});
                leftPos++;
            } else if (c[1] > rightPos) {
                q.offer(new Integer[]{costs[rightPos], rightPos});
                rightPos--;
            }
        }

        return res;
    }
}

性能

勉强通过,官网也是这个思路,耗时82ms。有网友的解法是分别使用了两个优先队列,只需要22ms。

1329.将矩阵按对角线排序

目标

矩阵对角线 是一条从矩阵最上面行或者最左侧列中的某个元素开始的对角线,沿右下方向一直到矩阵末尾的元素。例如,矩阵 mat 有 6 行 3 列,从 mat[2][0] 开始的 矩阵对角线 将会经过 mat[2][0]mat[3][1]mat[4][2]

给你一个 m * n 的整数矩阵 mat ,请你将同一条 矩阵对角线 上的元素按升序排序后,返回排好序的矩阵。

说明:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 100
  • 1 <= mat[i][j] <= 100

思路

排序是一大块内容,有机会统一总结一下。// todo

这里偷懒使用了优先队列,先放到队列里面排序,然后再写回去。

代码

/**
 * @date 2024-04-29 0:26
 */
public class DiagonalSort1329 {

    public int[][] diagonalSort(int[][] mat) {
        int m = mat.length;
        int n = mat[0].length;
        int i;
        int j;
        PriorityQueue<Integer> q = new PriorityQueue();
        for (int col = 0; col < n; col++) {
            j = col;
            i = 0;
            while (i < m && j < n) {
                q.offer(mat[i++][j++]);
            }
            j = col;
            i = 0;
            while (i < m && j < n) {
                mat[i++][j++] = q.poll();
            }
        }
        for (int row = 1; row < m; row++) {
            j = 0;
            i = row;
            while (i < m && j < n) {
                q.offer(mat[i++][j++]);
            }
            j = 0;
            i = row;
            while (i < m && j < n) {
                mat[i++][j++] = q.poll();
            }
        }

        return mat;
    }

}

性能

2639.查询网格图中每一列的宽度

目标

给你一个下标从 0 开始的 m * n 整数矩阵 grid 。矩阵中某一列的宽度是这一列数字的最大 字符串长度 。

  • 比方说,如果 grid = [[-10], [3], [12]] ,那么唯一一列的宽度是 3 ,因为 -10 的字符串长度为 3 。

请你返回一个大小为 n 的整数数组 ans ,其中 ans[i] 是第 i 列的宽度。

一个有 len 个数位的整数 x ,如果是非负数,那么 字符串长度 为 len ,否则为 len + 1 。

示例 1:

输入:grid = [[1],[22],[333]]
输出:[3]
解释:第 0 列中,333 字符串长度为 3 。

示例 2:

输入:grid = [[-15,1,3],[15,7,12],[5,6,-2]]
输出:[3,1,2]
解释:
第 0 列中,只有 -15 字符串长度为 3 。
第 1 列中,所有整数的字符串长度都是 1 。
第 2 列中,12 和 -2 的字符串长度都为 2 。

说明:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • -10^9 <= grid[r][c] <= 10^9

思路

这个题核心就是如何计算数字的长度。我们可以枚举 9, 99, 999, 9999, 99999, 999999, 9999999, 99999999, 999999999, Integer.MAX_VALUE,分别与这些值比较,Integer.stringSize就是如此实现的。对于负数需要将长度加1 int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);

也可以循环除以10直到0来计算长度。一个优化的点是不必求每一个数的长度,只需要求出最大值 max 与 最小值 min的长度即可。网友还提供了一个小技巧可以减少对较小值的长度计算。选取 max/10-min 中的较大值来计算长度 l,取 l+1。解释如下:如果 min > 0 那么 -min < 0,我们取到 max/10 的长度,所以长度为 l+1。如果 min < 0,并且 -min > max/10,我们取到 -min,长度需要加上负号,即 l+1。这里需要解释一下 -min < max && -min > max/10 的情况,这时 max 的长度与 -min 的长度加1 是相同的。而如果 min < 0,且 -min < max/10,取 max/10 长度减小了1,所以取 l+1

代码

/**
 * @date 2024-04-27 18:39
 */
public class FindColumnWidth2639 {

    int[] sizeTable = {9, 99, 999, 9999, 99999, 999999, 9999999,
            99999999, 999999999, Integer.MAX_VALUE};

    int stringSize(int x) {
        int j;
        if (x < 0) {
            x = -x;
            j = 2;
        } else {
            j = 1;
        }
        for (int i = 0; ; i++) {
            if (x <= sizeTable[i]) {
                return i + j;
            }
        }
    }

    public int[] findColumnWidth(int[][] grid) {
        int n = grid[0].length;
        int[] res = new int[n];
        int[] negative = new int[n];
        for (int[] ints : grid) {
            for (int i = 0; i < n; i++) {
                if (ints[i] < negative[i]) {
                    negative[i] = ints[i];
                } else if (ints[i] > res[i]) {
                    res[i] = ints[i];
                }
            }
        }
        for (int i = 0; i < n; i++) {
            res[i] = Math.max(stringSize(res[i]), stringSize(negative[i]));
        }
        return res;
    }

}

性能