3446.按对角线进行矩阵排序

目标

给你一个大小为 n x n 的整数方阵 grid。返回一个经过如下调整的矩阵:

  • 左下角三角形(包括中间对角线)的对角线按 非递增顺序 排序。
  • 右上角三角形 的对角线按 非递减顺序 排序。

示例 1:

输入: grid = [[1,7,3],[9,8,2],[4,5,6]]
输出: [[8,2,3],[9,6,7],[4,5,1]]
解释:
标有黑色箭头的对角线(左下角三角形)应按非递增顺序排序:
[1, 8, 6] 变为 [8, 6, 1]。
[9, 5] 和 [4] 保持不变。
标有蓝色箭头的对角线(右上角三角形)应按非递减顺序排序:
[7, 2] 变为 [2, 7]。
[3] 保持不变。

示例 2:

输入: grid = [[0,1],[1,2]]
输出: [[2,1],[1,0]]
解释:
标有黑色箭头的对角线必须按非递增顺序排序,因此 [0, 2] 变为 [2, 0]。其他对角线已经符合要求。

示例 3:

输入: grid = [[1]]
输出: [[1]]
解释:
只有一个元素的对角线已经符合要求,因此无需修改。

说明:

  • grid.length == grid[i].length == n
  • 1 <= n <= 10
  • -10^5 <= grid[i][j] <= 10^5

思路

参考 498.对角线遍历

代码


/**
 * @date 2025-08-28 8:57
 */
public class SortMatrix3446 {

    public int[][] sortMatrix(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int k = m + n - 1;
        for (int l = 1; l < n; l++) {
            int maxJ = Math.min(m + n - l - 1, n - 1);
            int minJ = Math.max(0, n - l);
            List<Integer> list = new ArrayList<>();
            for (int j = minJ; j <= maxJ; j++) {
                int i = j + l - n;
                list.add(grid[i][j]);
            }
            list.sort(null);
            int p = 0;
            for (int j = minJ; j <= maxJ; j++) {
                int i = j + l - n;
                grid[i][j] = list.get(p++);
            }
        }
        for (int l = n; l <= k; l++) {
            int maxJ = Math.min(m + n - l - 1, n - 1);
            int minJ = Math.max(0, n - l);
            List<Integer> list = new ArrayList<>();
            for (int j = minJ; j <= maxJ; j++) {
                int i = j + l - n;
                list.add(grid[i][j]);
            }
            list.sort(Collections.reverseOrder());
            int p = 0;
            for (int j = minJ; j <= maxJ; j++) {
                int i = j + l - n;
                grid[i][j] = list.get(p++);
            }
        }
        return grid;
    }
}

性能

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注