目标
给你一个整数 k
和一个整数 x
。整数 num
的价值是它的二进制表示中在 x
,2x
,3x
……
等位置处 set bit(指在某数的二进制表示中值为 1 的二进制位) 的数目(从最低有效位开始)。下面的表格包含了如何计算价值的例子。
x | num | Binary Representation | Price |
---|---|---|---|
1 | 13 | 000001101 | 3 |
2 | 13 | 000001101 | 1 |
2 | 233 | 011101001 | 3 |
3 | 13 | 000001101 | 1 |
3 | 362 | 101101010 | 2 |
num
的 累加价值 是从 1
到 num
的数字的 总 价值。如果 num
的累加价值小于或等于 k
则被认为是 廉价 的。
请你返回 最大 的廉价数字。
示例 1:
输入:k = 9, x = 1
输出:6
解释:由下表所示,6 是最大的廉价数字。
x | num | Binary Representation | Price | Accumulated Price |
---|---|---|---|---|
1 | 1 | 001 | 1 | 1 |
1 | 2 | 010 | 1 | 2 |
1 | 3 | 011 | 2 | 4 |
1 | 4 | 100 | 1 | 5 |
1 | 5 | 101 | 2 | 7 |
1 | 6 | 110 | 2 | 9 |
1 | 7 | 111 | 3 | 12 |
示例 2:
输入:k = 7, x = 2
输出:9
解释:由下表所示,9 是最大的廉价数字。
x | num | Binary Representation | Price | Accumulated Price |
---|---|---|---|---|
2 | 1 | 0001 | 0 | 0 |
2 | 2 | 0010 | 1 | 1 |
2 | 3 | 0011 | 1 | 2 |
2 | 4 | 0100 | 0 | 2 |
2 | 5 | 0101 | 0 | 2 |
2 | 6 | 0110 | 1 | 3 |
2 | 7 | 0111 | 1 | 4 |
2 | 8 | 1000 | 1 | 5 |
2 | 9 | 1001 | 1 | 6 |
2 | 10 | 1010 | 2 | 8 |
说明:
1 <= k <= 10^15
1 <= x <= 8
提示:
- Binary search the answer.
- In each step of the binary search you should calculate the number of the set bits in the ith position. Then calculate the sum of them.
思路
给定步长x,数字的价值定义为从最低有效位开始,以步长x遍历数字的二进制表示,并记录bit为1的个数。数字n的累加价值定义为 1 ~ n
的价值之和。给定数字k,求累加价值不超过k的最大数字。
先尝试模拟暴力求解。注意到返回值是 long 类型,说明n的规模超过了10^9,即便是 O(n)
的解法也会超时,并且每个数字都要循环bit位计数,肯定超时。我们需要要找一种 O(logn)
的解法。
提示说使用二分查找,问题的关键是如何直接计算出给定数字的累加价值。
// todo
代码