1975.最大方阵和

目标

给你一个 n x n 的整数方阵 matrix 。你可以执行以下操作 任意次 :

  • 选择 matrix 中 相邻 两个元素,并将它们都 乘以 -1 。

如果两个元素有 公共边 ,那么它们就是 相邻 的。

你的目的是 最大化 方阵元素的和。请你在执行以上操作之后,返回方阵的 最大 和。

示例 1:

输入:matrix = [[1,-1],[-1,1]]
输出:4
解释:我们可以执行以下操作使和等于 4 :
- 将第一行的 2 个元素乘以 -1 。
- 将第一列的 2 个元素乘以 -1 。

示例 2:

输入:matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]
输出:16
解释:我们可以执行以下操作使和等于 16 :
- 将第二行的最后 2 个元素乘以 -1 。

说明:

  • n == matrix.length == matrix[i].length
  • 2 <= n <= 250
  • -10^5 <= matrix[i][j] <= 10^5

思路

有一个 n x n 矩阵,每次操作可以将相邻的元素乘以 -1,执行操作任意次,求能够得到的最大方阵和。

经过观察发现,可以将任意两个元素乘以 -1,只需对路径上的每个元素执行操作,改变 (cur, next) 的符号,中间每个元素的符号都被改变了两次,即首尾元素改变了符号。

只需判断矩阵中负数的个数,如果是偶数,可以将负数全部变为相反数;如果是奇数,则需要找到最小的非负数,将其变为负数,其余元素全部变为非负数。

代码


/**
 * @date 2026-01-05 9:07
 */
public class MaxMatrixSum1975 {

    public long maxMatrixSum(int[][] matrix) {
        long res = 0L;
        int negativeCnt = 0;
        int min = Integer.MAX_VALUE;
        for (int[] row : matrix) {
            for (int col : row) {
                res += Math.abs(col);
                min = Math.min(min, Math.abs(col));
                if (col < 0) {
                    negativeCnt++;
                }
            }
        }
        if (negativeCnt % 2 == 1) {
            res -= 2 * min;
        }
        return res;
    }

}

性能