36.有效的数独

目标

请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

注意:

  • 一个有效的数独(部分已被填充)不一定是可解的。
  • 只需要根据以上规则,验证已经填入的数字是否有效即可。
  • 空白格用 '.' 表示。

示例 1:

输入:board = 
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:true

示例 2:

输入:board = 
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:false
解释:除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。

说明:

  • board.length == 9
  • board[i].length == 9
  • board[i][j] 是一位数字(1-9)或者 '.'

思路

依题意模拟即可。

代码


/**
 * @date 2025-01-19 20:00
 */
public class IsValidSudoku36 {

    public boolean isValidSudoku(char[][] board) {
        int m = board.length;
        int n = board[0].length;
        for (int i = 0; i < m; i++) {
            boolean[] exists = new boolean[10];
            for (int j = 0; j < n; j++) {
                char c = board[i][j];
                if ('.' == c) {
                    continue;
                }
                if (exists[c - '0']) {
                    return false;
                }
                exists[c - '0'] = true;
            }
        }
        for (int j = 0; j < n; j++) {
            boolean[] exists = new boolean[10];
            for (int i = 0; i < m; i++) {
                char c = board[i][j];
                if ('.' == c) {
                    continue;
                }
                if (exists[c - '0']) {
                    return false;
                }
                exists[c - '0'] = true;
            }
        }
        boolean[] exists = null;
        for (int j = 0; j < n; j += 3) {
            for (int i = 0; i < m; i++) {
                if (i % 3 == 0) {
                    exists = new boolean[10];
                }
                for (int k = j; k < j + 3; k++) {
                    char c = board[i][k];
                    if ('.' == c) {
                        continue;
                    }
                    if (exists[c - '0']) {
                        return false;
                    }
                    exists[c - '0'] = true;
                }
            }
        }
        return true;
    }

}

性能