2278.字母在字符串中的百分比

目标

给你一个字符串 s 和一个字符 letter ,返回在 s 中等于 letter 字符所占的 百分比 ,向下取整到最接近的百分比。

示例 1:

输入:s = "foobar", letter = "o"
输出:33
解释:
等于字母 'o' 的字符在 s 中占到的百分比是 2 / 6 * 100% = 33% ,向下取整,所以返回 33 。

示例 2:

输入:s = "jjjj", letter = "k"
输出:0
解释:
等于字母 'k' 的字符在 s 中占到的百分比是 0% ,所以返回 0 。

说明:

  • 1 <= s.length <= 100
  • s 由小写英文字母组成
  • letter 是一个小写英文字母

思路

统计给定字符在字符串中出现的百分比,要求向下取整。即 100 * cnt / total

代码


/**
 * @date 2025-03-31 8:43
 */
public class PercentageLetter2278 {

    public int percentageLetter(String s, char letter) {
        int n = s.length();
        int res = 0;
        for (int i = 0; i < n; i++) {
            if (s.charAt(i) == letter) {
                res++;
            }
        }
        return res * 100 / n;
    }
}

性能

2109.向字符串添加空格

目标

给你一个下标从 0 开始的字符串 s ,以及一个下标从 0 开始的整数数组 spaces 。

数组 spaces 描述原字符串中需要添加空格的下标。每个空格都应该插入到给定索引处的字符值 之前 。

  • 例如,s = "EnjoyYourCoffee" 且 spaces = [5, 9] ,那么我们需要在 'Y' 和 'C' 之前添加空格,这两个字符分别位于下标 5 和下标 9 。因此,最终得到 "Enjoy Your Coffee" 。

请你添加空格,并返回修改后的字符串。

示例 1:

输入:s = "LeetcodeHelpsMeLearn", spaces = [8,13,15]
输出:"Leetcode Helps Me Learn"
解释:
下标 8、13 和 15 对应 "LeetcodeHelpsMeLearn" 中加粗斜体字符。
接着在这些字符前添加空格。

示例 2:

输入:s = "icodeinpython", spaces = [1,5,7,9]
输出:"i code in py thon"
解释:
下标 1、5、7 和 9 对应 "icodeinpython" 中加粗斜体字符。
接着在这些字符前添加空格。

示例 3:

输入:s = "spacing", spaces = [0,1,2,3,4,5,6]
输出:" s p a c i n g"
解释:
字符串的第一个字符前可以添加空格。

说明:

  • 1 <= s.length <= 3 * 10^5
  • s 仅由大小写英文字母组成
  • 1 <= spaces.length <= 3 * 10^5
  • 0 <= spaces[i] <= s.length - 1
  • spaces 中的所有值 严格递增

思路

在字符串的指定位置添加空格。

代码


/**
 * @date 2025-03-30 0:08
 */
public class AddSpaces2109 {

    public String addSpaces(String s, int[] spaces) {
        StringBuilder sb = new StringBuilder(s.length() + spaces.length);
        int start = 0;
        for (int i : spaces) {
            sb.append(s, start, i).append(' ');
            start = i;
        }
        sb.append(s.substring(start));
        return sb.toString();
    }
}

性能

2360.图中的最长环

目标

给你一个 n 个节点的 有向图 ,节点编号为 0 到 n - 1 ,其中每个节点 至多 有一条出边。

图用一个大小为 n 下标从 0 开始的数组 edges 表示,节点 i 到节点 edges[i] 之间有一条有向边。如果节点 i 没有出边,那么 edges[i] == -1 。

请你返回图中的 最长 环,如果没有任何环,请返回 -1 。

一个环指的是起点和终点是 同一个 节点的路径。

示例 1:

输入:edges = [3,3,4,2,3]
输出去:3
解释:图中的最长环是:2 -> 4 -> 3 -> 2 。
这个环的长度为 3 ,所以返回 3 。

示例 2:

输入:edges = [2,-1,3,1]
输出:-1
解释:图中没有任何环。

说明:

  • n == edges.length
  • 2 <= n <= 10^5
  • -1 <= edges[i] < n
  • edges[i] != i

思路

//todo

代码

性能

2716.最小化字符串长度

目标

给你一个下标从 0 开始的字符串 s ,重复执行下述操作 任意 次:

  • 在字符串中选出一个下标 i ,并使 c 为字符串下标 i 处的字符。并在 i 左侧(如果有)和 右侧(如果有)各 删除 一个距离 i 最近 的字符 c 。

请你通过执行上述操作任意次,使 s 的长度 最小化 。

返回一个表示 最小化 字符串的长度的整数。

示例 1:

输入:s = "aaabc"
输出:3
解释:在这个示例中,s 等于 "aaabc" 。我们可以选择位于下标 1 处的字符 'a' 开始。接着删除下标 1 左侧最近的那个 'a'(位于下标 0)以及下标 1 右侧最近的那个 'a'(位于下标 2)。执行操作后,字符串变为 "abc" 。继续对字符串执行任何操作都不会改变其长度。因此,最小化字符串的长度是 3 。

示例 2:

输入:s = "cbbd"
输出:3
解释:我们可以选择位于下标 1 处的字符 'b' 开始。下标 1 左侧不存在字符 'b' ,但右侧存在一个字符 'b'(位于下标 2),所以会删除位于下标 2 的字符 'b' 。执行操作后,字符串变为 "cbd" 。继续对字符串执行任何操作都不会改变其长度。因此,最小化字符串的长度是 3 。

示例 3:

输入:s = "dddaaa"
输出:2
解释:我们可以选择位于下标 1 处的字符 'd' 开始。接着删除下标 1 左侧最近的那个 'd'(位于下标 0)以及下标 1 右侧最近的那个 'd'(位于下标 2)。执行操作后,字符串变为 "daaa" 。继续对新字符串执行操作,可以选择位于下标 2 的字符 'a' 。接着删除下标 2 左侧最近的那个 'a'(位于下标 1)以及下标 2 右侧最近的那个 'a'(位于下标 3)。执行操作后,字符串变为 "da" 。继续对字符串执行任何操作都不会改变其长度。因此,最小化字符串的长度是 2 。

说明:

  • 1 <= s.length <= 100
  • s 仅由小写英文字母组成

思路

每次操作可以从字符串 s 中任选一个字符 c,同时删除其左侧与右侧距离最近的相同字符。求执行操作任意次后字符串的最小长度。

由于选中的字符不会被删除,本质是返回字符串中不同字符的个数。

代码


/**
 * @date 2025-03-28 0:20
 */
public class MinimizedStringLength2716 {

    /**
     * 位运算,将出现过的字符保存到 mask 中
     */
    public int minimizedStringLength_v1(String s) {
        int n = s.length();
        int mask = 0;
        for (int i = 0; i < n; i++) {
            mask |= 1 << (s.charAt(i) - 'a');
        }
        return Integer.bitCount(mask);
    }

    public int minimizedStringLength(String s) {
        int n = s.length();
        Set<Character> set = new HashSet<>();
        for (int i = 0; i < n; i++) {
            set.add(s.charAt(i));
        }
        return set.size();
    }
}

性能

2712.使所有字符相等的最小成本

目标

给你一个下标从 0 开始、长度为 n 的二进制字符串 s ,你可以对其执行两种操作:

  • 选中一个下标 i 并且反转从下标 0 到下标 i(包括下标 0 和下标 i )的所有字符,成本为 i + 1 。
  • 选中一个下标 i 并且反转从下标 i 到下标 n - 1(包括下标 i 和下标 n - 1 )的所有字符,成本为 n - i 。

返回使字符串内所有字符 相等 需要的 最小成本 。

反转 字符意味着:如果原来的值是 '0' ,则反转后值变为 '1' ,反之亦然。

示例 1:

输入:s = "0011"
输出:2
解释:执行第二种操作,选中下标 i = 2 ,可以得到 s = "0000" ,成本为 2 。可以证明 2 是使所有字符相等的最小成本。

示例 2:

输入:s = "010101"
输出:9
解释:执行第一种操作,选中下标 i = 2 ,可以得到 s = "101101" ,成本为 3 。
执行第一种操作,选中下标 i = 1 ,可以得到 s = "011101" ,成本为 2 。
执行第一种操作,选中下标 i = 0 ,可以得到 s = "111101" ,成本为 1 。
执行第二种操作,选中下标 i = 4 ,可以得到 s = "111110" ,成本为 2 。
执行第二种操作,选中下标 i = 5 ,可以得到 s = "111111" ,成本为 1 。
使所有字符相等的总成本等于 9 。可以证明 9 是使所有字符相等的最小成本。 

说明:

  • 1 <= s.length == n <= 10^5
  • s[i] 为 '0' 或 '1'

思路

有一个二进制字符串,每次操作可以反转前缀 0 ~ i,成本是 i + 1,也可以反转后缀 i ~ n - 1,成本是 n - i。求使字符串所有字符相等的最小成本。

如何操作才能使字符相等?相等字符是 0 还是 1?操作哪边才能使成本最小?

关键点是想清楚与是 0 还是 1 没有关系,只要相邻的元素值不同,就必须要反转,无非是考虑反转前缀还是后缀,每次操作只影响相邻的元素关系。

代码


/**
 * @date 2025-03-27 1:33
 */
public class MinimumCost2712 {

    public long minimumCost(String s) {
        int n = s.length();
        long res = 0;
        for (int i = 1; i < n; i++) {
            if (s.charAt(i) != s.charAt(i - 1)) {
                // i 表示反转 0 ~ i - 1,n - i 表示反转 i ~ n - 1
                res += Math.min(i, n - i);
            }
        }
        return res;
    }
}

性能

2829.k-avoiding数组的最小总和

目标

给你两个整数 n 和 k 。

对于一个由 不同 正整数组成的数组,如果其中不存在任何求和等于 k 的不同元素对,则称其为 k-avoiding 数组。

返回长度为 n 的 k-avoiding 数组的可能的最小总和。

示例 1:

输入:n = 5, k = 4
输出:18
解释:设若 k-avoiding 数组为 [1,2,4,5,6] ,其元素总和为 18 。
可以证明不存在总和小于 18 的 k-avoiding 数组。

示例 2:

输入:n = 2, k = 6
输出:3
解释:可以构造数组 [1,2] ,其元素总和为 3 。
可以证明不存在总和小于 3 的 k-avoiding 数组。 

说明:

  • 1 <= n, k <= 50

思路

定义 k-avoiding 数组是由不同的正整数组成,并且任意两个元素的和不等于 k 的数组。求长度为 n 的 k-avoiding 数组的最小和。

构造一个长度为 n 的正整数数组,要使和最小,需要从 num = 1 开始选,跳过 k - num

网友指出可以使用等差数列求和来计算,第一部分是 1 ~ m, m = min(k / 2, n) 和为 m * (m + 1) / 2,第二部分是 k ~ k + n - m - 1,和为 (n - m) * (2 * k + n - m - 1) / 2

代码


/**
 * @date 2025-03-26 0:13
 */
public class MinimumSum2829 {

    public int minimumSum(int n, int k) {
        int res = 0;
        int length = 0;
        int num = 1;
        Set<Integer> avoiding = new HashSet<>();
        while (length < n) {
            if (avoiding.contains(num)) {
                num++;
                continue;
            }
            if (num < k) {
                avoiding.add(k - num);
            }
            length++;
            res += num;
            num++;
        }
        return res;
    }

}

性能

2711.对角线上不同值的数量差

目标

给你一个下标从 0 开始、大小为 m x n 的二维矩阵 grid ,请你求解大小同样为 m x n 的答案矩阵 answer 。

矩阵 answer 中每个单元格 (r, c) 的值可以按下述方式进行计算:

  • topLeft[r][c] 为矩阵 grid 中单元格 (r, c) 左上角对角线上 不同值 的数量。
  • bottomRight[r][c] 为矩阵 grid 中单元格 (r, c) 右下角对角线上 不同值 的数量。

然后 answer[r][c] = |topLeft[r][c] - bottomRight[r][c]|

返回矩阵 answer 。

矩阵对角线 是从最顶行或最左列的某个单元格开始,向右下方向走到矩阵末尾的对角线。

如果单元格 (r1, c1) 和单元格 (r, c) 属于同一条对角线且 r1 < r ,则单元格 (r1, c1) 属于单元格 (r, c) 的左上对角线。类似地,可以定义右下对角线。

示例 1:

输入:grid = [[1,2,3],[3,1,5],[3,2,1]]
输出:[[1,1,0],[1,0,1],[0,1,1]]
解释:第 1 个图表示最初的矩阵 grid 。 
第 2 个图表示对单元格 (0,0) 计算,其中蓝色单元格是位于右下对角线的单元格。
第 3 个图表示对单元格 (1,2) 计算,其中红色单元格是位于左上对角线的单元格。
第 4 个图表示对单元格 (1,1) 计算,其中蓝色单元格是位于右下对角线的单元格,红色单元格是位于左上对角线的单元格。
- 单元格 (0,0) 的右下对角线包含 [1,1] ,而左上对角线包含 [] 。对应答案是 |1 - 0| = 1 。
- 单元格 (1,2) 的右下对角线包含 [] ,而左上对角线包含 [2] 。对应答案是 |0 - 1| = 1 。
- 单元格 (1,1) 的右下对角线包含 [1] ,而左上对角线包含 [1] 。对应答案是 |1 - 1| = 0 。
其他单元格的对应答案也可以按照这样的流程进行计算。

示例 2:

输入:grid = [[1]]
输出:[[0]]
解释:- 单元格 (0,0) 的右下对角线包含 [] ,左上对角线包含 [] 。对应答案是 |0 - 0| = 0 。

说明:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n, grid[i][j] <= 50

思路

计算矩阵元素左上对角线的不同元素个数与右下对角线的不同元素个数的差的绝对值。即将元素所在的左上右下对角线,以当前元素为分界点(不包括当前元素),分成左上与右下两部分,计算每部分不同元素的个数,取差的绝对值。

暴力解法是枚举每个格子的左上右下元素,每一对角线都要遍历它所包含的元素个数次。

可以直接按对角线遍历,先记录前缀中的不同元素个数,然后再倒着遍历,计算差值的绝对值。

网友提到由于元素值不大,可以将其保存到 long 型数字中。

代码


/**
 * @date 2025-03-25 0:12
 */
public class DifferenceOfDistinctValues2711 {

    public int[][] differenceOfDistinctValues(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int[][] res = new int[m][n];
        for (int i = 0; i < m + n - 1; i++) {
            int row = i / n < 1 ? 0 : i - n + 1 % m;
            int col = row > 0 ? 0 : n - 1 - i;
            Set<Integer> set = new HashSet<>();
            while (row < m && col < n){
                res[row][col] = set.size();
                set.add(grid[row][col]);
                row++;
                col++;
            }
            row--;
            col--;
            set.clear();
            while (row >= 0 && col >= 0){
                res[row][col] = Math.abs(res[row][col] - set.size());
                set.add(grid[row][col]);
                row--;
                col--;
            }
        }
        return res;
    }

}

性能

2255.统计是给定字符串前缀的字符串数目

目标

给你一个字符串数组 words 和一个字符串 s ,其中 words[i] 和 s 只包含 小写英文字母 。

请你返回 words 中是字符串 s 前缀 的 字符串数目 。

一个字符串的 前缀 是出现在字符串开头的子字符串。子字符串 是一个字符串中的连续一段字符序列。

示例 1:

输入:words = ["a","b","c","ab","bc","abc"], s = "abc"
输出:3
解释:
words 中是 s = "abc" 前缀的字符串为:
"a" ,"ab" 和 "abc" 。
所以 words 中是字符串 s 前缀的字符串数目为 3 。

示例 2:

输入:words = ["a","a"], s = "aa"
输出:2
解释:
两个字符串都是 s 的前缀。
注意,相同的字符串可能在 words 中出现多次,它们应该被计数多次。

说明:

  • 1 <= words.length <= 1000
  • 1 <= words[i].length, s.length <= 10
  • words[i] 和 s 只 包含小写英文字母。

思路

计算字符串数组 words 中有多少个字符串是 s 的前缀。

代码


/**
 * @date 2025-03-24 8:44
 */
public class CountPrefixes2255 {

    public int countPrefixes(String[] words, String s) {
        int res = 0;
        for (String word : words) {
            if (word.length() > s.length()){
                continue;
            }
            int cnt = 1;
            for (int i = 0; i < word.length(); i++) {
                if (word.charAt(i) != s.charAt(i)) {
                    cnt = 0;
                    break;
                }
            }
            res += cnt;
        }
        return res;
    }
}

性能

2116.判断一个括号字符串是否有效

目标

一个括号字符串是只由 '(' 和 ')' 组成的 非空 字符串。如果一个字符串满足下面 任意 一个条件,那么它就是有效的:

  • 字符串为 ().
  • 它可以表示为 AB(A 与 B 连接),其中A 和 B 都是有效括号字符串。
  • 它可以表示为 (A) ,其中 A 是一个有效括号字符串。

给你一个括号字符串 s 和一个字符串 locked ,两者长度都为 n 。locked 是一个二进制字符串,只包含 '0' 和 '1' 。对于 locked 中 每一个 下标 i :

  • 如果 locked[i] 是 '1' ,你 不能 改变 s[i] 。
  • 如果 locked[i] 是 '0' ,你 可以 将 s[i] 变为 '(' 或者 ')' 。

如果你可以将 s 变为有效括号字符串,请你返回 true ,否则返回 false 。

示例 1:

输入:s = "))()))", locked = "010100"
输出:true
解释:locked[1] == '1' 和 locked[3] == '1' ,所以我们无法改变 s[1] 或者 s[3] 。
我们可以将 s[0] 和 s[4] 变为 '(' ,不改变 s[2] 和 s[5] ,使 s 变为有效字符串。

示例 2:

输入:s = "()()", locked = "0000"
输出:true
解释:我们不需要做任何改变,因为 s 已经是有效字符串了。

示例 3:

输入:s = ")", locked = "0"
输出:false
解释:locked 允许改变 s[0] 。
但无论将 s[0] 变为 '(' 或者 ')' 都无法使 s 变为有效字符串。

示例 4:

输入:s = "(((())(((())", locked = "111111010111"
输出:true
解释:locked 允许我们改变 s[6] 和 s[8]。
我们将 s[6] 和 s[8] 改为 ')' 使 s 变为有效字符串。

说明:

  • n == s.length == locked.length
  • 1 <= n <= 10^5
  • s[i] 要么是 '(' 要么是 ')' 。
  • locked[i] 要么是 '0' 要么是 '1' 。

思路

有一个由 () 组成的非空字符串,如果 locked[i]0,可以任意修改 i 位置上的字符,判断能否使括号字符串变得有效。

从左到右累加未匹配的左括号数量,遇到 ( 加一,遇到 ) 减一,对于有效字符串最终会得到 0,并且有效字符串的任意前缀中未匹配的 ( 的数量总是大于等于 0

利用这一性质维护一个未匹配左括号数量的可能取值集合,如果最终集合中包含 0,则说明可以变为有效。具体实现时只需维护集合的最大值与最小值,因为集合中的数字都是同时加一减一,所以它们是连续的奇数或偶数。

具体来说就是遇到不可变字符,( min max 加一,) min max 减一。如果 max < 0,返回 false,如果 min < 0,则取 1(如果 min < 0,说明原来是偶数,由于 max 没有减为负数,说明还有比 0 大的偶数,那么最小值为 2 - 1)。如果遇到可变字符,max 加一,min 减一,如果 min < 0,则取 1

代码


/**
 * @date 2025-03-23 21:12
 */
public class CanBeValid2116 {

    public boolean canBeValid(String s, String locked) {
        int n = s.length();
        if (n % 2 == 1) {
            return false;
        }
        int max = 0, min = 0;
        char[] chars = s.toCharArray();
        for (int i = 0; i < n; i++) {
            if (locked.charAt(i) == '0') {
                max++;
                if (--min < 0) {
                    min = 1;
                }
                continue;
            }
            if ('(' == chars[i]) {
                max++;
                min++;
            } else {
                if (--max < 0) {
                    return false;
                }
                if (--min < 0) {
                    min = 1;
                }
            }
        }
        return min == 0;
    }
}

性能

2643.一最多的行

目标

给你一个大小为 m x n 的二进制矩阵 mat ,请你找出包含最多 1 的行的下标(从 0 开始)以及这一行中 1 的数目。

如果有多行包含最多的 1 ,只需要选择 行下标最小 的那一行。

返回一个由行下标和该行中 1 的数量组成的数组。

示例 1:

输入:mat = [[0,1],[1,0]]
输出:[0,1]
解释:两行中 1 的数量相同。所以返回下标最小的行,下标为 0 。该行 1 的数量为 1 。所以,答案为 [0,1] 。 

示例 2:

输入:mat = [[0,0,0],[0,1,1]]
输出:[1,2]
解释:下标为 1 的行中 1 的数量最多。该行 1 的数量为 2 。所以,答案为 [1,2] 。

示例 3:

输入:mat = [[0,0],[1,1],[0,0]]
输出:[1,2]
解释:下标为 1 的行中 1 的数量最多。该行 1 的数量为 2 。所以,答案为 [1,2] 。

说明:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 100
  • mat[i][j] 为 0 或 1

思路

返回二进制矩阵中 1 最多的行下标以及 1 的个数。

代码


/**
 * @date 2025-03-22 19:55
 */
public class RowAndMaximumOnes2643 {

    public int[] rowAndMaximumOnes(int[][] mat) {
        int m = mat.length;
        int n = mat[0].length;
        int[] res = new int[2];
        for (int i = 0; i < m; i++) {
            int cnt = 0;
            for (int j = 0; j < n; j++) {
                cnt += mat[i][j];
            }
            if (cnt > res[1]) {
                res[0] = i;
                res[1] = cnt;
            }
        }
        return res;
    }
}

性能