63.不同路径II

目标

给定一个 m x n 的整数数组 grid。一个机器人初始位于 左上角(即 grid[0][0])。机器人尝试移动到 右下角(即 grid[m - 1][n - 1])。机器人每次只能向下或者向右移动一步。

网格中的障碍物和空位置分别用 1 和 0 来表示。机器人的移动路径中不能包含 任何 有障碍物的方格。

返回机器人能够到达右下角的不同路径数量。

测试用例保证答案小于等于 2 * 109。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

说明:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

思路

有一个 m x n 的二进制矩阵,0 代表空位,1 代表有障碍物。有一个机器人可以向右或向下移动,求从 (0,0) 到 (m - 1, n - 1) 的路径有多少。

定义 dp[i][j] 表示到达坐标 (i - 1, j - 1) 的不同路径数。这样定义可以省去单独初始化第一行第一列。状态转移方程为 当 obstacleGrid[i][j] == 0 时, dp[i][j] = dp[i - 1][j] + dp[i][j - 1],初值为 dp[0][1] = 1,可以视为从 (-1, 0)(0, 0) 的路径数量,如果 (0, 0) 有障碍物则为 0,否则为 1

代码


/**
 * @date 2025-02-01 20:05
 */
public class UniquePathsWithObstacles63 {

     public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m + 1][n + 1];
        dp[0][1] = 1;
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (obstacleGrid[i - 1][j - 1] == 0){
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
        }
        return dp[m][n];
    }

}

性能

59.螺旋矩阵II

目标

给你一个正整数 n ,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。

示例 1:

输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]

示例 2:

输入:n = 1
输出:[[1]]

说明:

1 <= n <= 20

思路

生成一个 n x n 的正方形矩阵,元素值 1 ~ n^2 按顺时针螺旋顺序排列。

定义 4 个方向,用 direction[i] 表示沿着 i 方向前进的坐标变化量。首先从 (0, 0) 开始向右遍历,预先计算下一步的坐标,如果越界或者已经设置过值则转向。这种解法需要标记已经设置过值的数组,由于填充的元素值都大于 0,数组初值无需特殊处理,只需判断元素是否大于 0 即可。

代码


/**
 * @date 2025-02-07 0:11
 */
public class GenerateMatrix59 {

    public int[][] generateMatrix(int n) {
        int[][] matrix = new int[n][n];
        int[][] direction = new int[][]{{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
        int x = 0, y = 0, num = 1, d = 0;
        for (int i = 0; i < n * n; i++) {
            matrix[x][y] = num++;
            int xNext = x + direction[d][0];
            int yNext = y + direction[d][1];
            if (xNext == n || yNext < 0 || yNext == n || matrix[xNext][yNext] != 0) {
                d = (d + 1) % 4;
            }
            x += direction[d][0];
            y += direction[d][1];
        }
        return matrix;
    }

}

性能

47.全排列II

目标

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],
 [1,2,1],
 [2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

说明:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

思路

返回数组不重复的全排列。

依次枚举第 i 个位置的可选元素,不含重复元素的全排列个数为 n!,收集结果复杂度为 O(n)。重复排列的处理与 与 90.子集II 类似,先排序数组,在每个位置枚举元素时,直接跳过后续相同的元素。

代码


/**
 * @date 2025-02-06 8:41
 */
public class PermuteUnique47 {

    public List<List<Integer>> permuteUnique(int[] nums) {
        Arrays.sort(nums);
        List<List<Integer>> res = new ArrayList<>();
        int n = nums.length;
        boolean[] visited = new boolean[n];
        List<Integer> path = Arrays.asList(new Integer[n]);
        dfs(0, nums, visited, path, res);
        return res;
    }

    public void dfs(int index, int[] nums, boolean[] visited, List<Integer> path, List<List<Integer>> res) {
        int n = nums.length;
        if (index == n) {
            List<Integer> permute = new ArrayList<>(path);
            res.add(permute);
            return;
        }
        for (int i = 0; i < n; i++) {
            if (visited[i] || (i > 0 && nums[i] == nums[i - 1] && !visited[i - 1])) {
                continue;
            }
            visited[i] = true;
            path.set(index, nums[i]);
            dfs(index + 1, nums, visited, path, res);
            visited[i] = false;
        }
    }

}

性能

90.子集II

目标

给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的 子集(幂集)。

解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。

示例 1:

输入:nums = [1,2,2]
输出:[[],[1],[1,2],[1,2,2],[2],[2,2]]

示例 2:

输入:nums = [0]
输出:[[],[0]]

说明:

  • 1 <= nums.length <= 10
  • -10 <= nums[i] <= 10

思路

返回数组不重复的子序列。

枚举子序列可以使用迭代或者回溯。迭代的思路是使用 bitmap 表示对应下标是否在子序列中,如果数组中元素个数为 nbitmap 值为 1 << n。回溯的思路是当前元素选或者不选,或者从当前元素到结尾下一个元素选哪一个。

题目的关键是如何判断收集到的子序列是否重复,这里的重复指组成子序列的元素与个数完全相同。

很容易想到使用序列的字符串来判断是否重复,但是如何处理组成元素相同而顺序不同的情况?可以对原数组排序,这样可以保证相同元素在子序列中的出现位置相同。比如 4, 4, 4, 1, 4,排序后 4 只会出现在 1 的后面,如果子序列中 4 的个数相同,那么子序列字符串也相同,这样就可以去重了。

如果使用回溯,则可以在枚举时直接去重。如果不选择某个元素,那么后面 相同的 元素都不选。这样可以保证相同元素同样的出现次数只枚举一次。

也有网友使用桶排序,回溯时对相同元素枚举取 0 ~ k 个。

代码


/**
 * @date 2025-02-05 9:09
 */
public class SubsetsWithDup90 {

    public List<List<Integer>> subsetsWithDup_v1(int[] nums) {
        int n = nums.length;
        List<List<Integer>> res = new ArrayList<>();
        Set<String> set = new HashSet<>();
        Arrays.sort(nums);
        n = 1 << n;
        for (int i = 0; i < n; i++) {
            List<Integer> subset = new ArrayList<>();
            for (int j = 0; j < nums.length; j++) {
                if (((i >> j) & 1) == 1) {
                    subset.add(nums[j]);
                }
            }
            if (!set.contains(subset.toString())) {
                res.add(subset);
            }
            set.add(subset.toString());
        }
        return res;
    }

    public List<List<Integer>> subsetsWithDup(int[] nums) {
        List<List<Integer>> res = new ArrayList<>();
        Arrays.sort(nums);
        List<Integer> subset = new ArrayList<>();
        dfs(0, nums, subset, res);
        return res;
    }

    public void dfs(int index, int[] nums, List<Integer> subset, List<List<Integer>> res) {
        if (index == nums.length) {
            res.add(new ArrayList<>(subset));
            return;
        }
        subset.add(nums[index]);
        dfs(index + 1, nums, subset, res);
        subset.remove(subset.size() - 1);
        index++;
        while (index < nums.length && nums[index] == nums[index - 1]){
            index++;
        }
        dfs(index, nums, subset, res);
    }

}

性能

bitmap 迭代

回溯

922.按奇偶排序数组II

目标

给定一个非负整数数组 nums, nums 中一半整数是 奇数 ,一半整数是 偶数 。

对数组进行排序,以便当 nums[i] 为奇数时,i 也是 奇数 ;当 nums[i] 为偶数时, i 也是 偶数 。

你可以返回 任何满足上述条件的数组作为答案 。

示例 1:

输入:nums = [4,2,5,7]
输出:[4,5,2,7]
解释:[4,7,2,5],[2,5,4,7],[2,7,4,5] 也会被接受。

示例 2:

输入:nums = [2,3]
输出:[2,3]

说明:

  • 2 <= nums.length <= 2 * 10^4
  • nums.length 是偶数
  • nums 中一半是偶数
  • 0 <= nums[i] <= 1000

进阶:可以不使用额外空间解决问题吗?

思路

数组 nums 长度为偶数,其元素一半为偶数,另一半为奇数。调整数组元素的顺序,使得奇数下标中的元素为奇数,偶数下标的元素为偶数。

使用奇偶两个指针,步长为2,找到不满足条件的元素并交换。

代码


/**
 * @date 2025-02-04 19:04
 */
public class SortArrayByParityII922 {

    public int[] sortArrayByParityII(int[] nums) {
        int n = nums.length;
        int even = 0, odd = 1;
        while (even < n && odd < n) {
            while (even < n && nums[even] % 2 == 0) {
                even += 2;
            }
            if (even >= n) {
                break;
            }
            while (odd < n && nums[odd] % 2 == 1) {
                odd += 2;
            }
            int tmp = nums[even];
            nums[even] = nums[odd];
            nums[odd] = tmp;
        }
        return nums;
    }

}

性能

680.验证回文串II

目标

给你一个字符串 s,最多 可以从中删除一个字符。

请你判断 s 是否能成为回文字符串:如果能,返回 true ;否则,返回 false 。

示例 1:

输入:s = "aba"
输出:true

示例 2:

输入:s = "abca"
输出:true
解释:你可以删除字符 'c' 。

示例 3:

输入:s = "abc"
输出:false

说明:

  • 1 <= s.length <= 10^5
  • s 由小写英文字母组成

思路

判断给定字符串是否是回文,如果不是,能否删除任意一个字符使之变成回文。

当不满足回文条件时,分别考虑删掉其中一个字符,判断剩余子串是否是回文即可。

代码


/**
 * @date 2025-02-03 18:24
 */
public class ValidPalindrome680 {

    public boolean validPalindrome(String s) {
        int n = s.length();
        int i = 0;
        for (; i < n / 2; i++) {
            // 找到第一个不满足回文的字符下标
            if (s.charAt(i) != s.charAt(n - 1 - i)) {
                break;
            }
        }
        if (i == n / 2) {
            return true;
        }
        // 尝试删掉左边/右边字符判断剩余字符是否是回文
        boolean res = true;
        for (int j = i; j < n / 2; j++) {
            // 删掉 n - 1 - i,即 n - 2 - j
            if (s.charAt(j) != s.charAt(n - 2 - j)) {
                res = false;
            }
        }
        if (res) {
            return true;
        }
        // 这里是 j <= n /2,例如 abc,i + 1 指向 b
        for (int j = i + 1; j <= n / 2; j++) {
            // 这里是 n - 1 - i, 即 n - j,相当于删除了 i,但是右指针是不变的
            if (s.charAt(j) != s.charAt(n - j)) {
                return false;
            }
        }
        return true;
    }

}

性能

598.区间加法II

目标

给你一个 m x n 的矩阵 M 和一个操作数组 op 。矩阵初始化时所有的单元格都为 0 。ops[i] = [ai, bi] 意味着当所有的 0 <= x < ai 和 0 <= y < bi 时, M[x][y] 应该加 1。

在 执行完所有操作后 ,计算并返回 矩阵中最大整数的个数 。

示例 1:

输入: m = 3, n = 3,ops = [[2,2],[3,3]]
输出: 4
解释: M 中最大的整数是 2, 而且 M 中有4个值为2的元素。因此返回 4。

示例 2:

输入: m = 3, n = 3, ops = [[2,2],[3,3],[3,3],[3,3],[2,2],[3,3],[3,3],[3,3],[2,2],[3,3],[3,3],[3,3]]
输出: 4

示例 3:

输入: m = 3, n = 3, ops = []
输出: 9

说明:

  • 1 <= m, n <= 4 * 10^4
  • 0 <= ops.length <= 10^4
  • ops[i].length == 2
  • 1 <= ai <= m
  • 1 <= bi <= n

思路

有一个 m x n 矩阵,其所有元素初值为0。另有一个二维数组 ops,每一个操作 ops[i] = [ai, bi] 表示将矩阵中 x ∈ [0, ai], y ∈ [0, bi] 的元素加 1。求执行完所有操作后,矩阵中最大元素的个数。

这其实是一个脑筋急转弯,就是求操作数组中 x 与 y 的最小值,[0, 0][x, y] 的矩阵是所有操作都重合的,所以元素值最大,其个数为 x * y。注意考虑操作为空的情况,这时返回 m * n,所有元素均为 0

代码


/**
 * @author jd95288
 * @date 2025-02-02 1:23
 */
public class MaxCount598 {

    public int maxCount(int m, int n, int[][] ops) {
        int x = m;
        int y = n;
        for (int[] op : ops) {
            x = Math.min(x, op[0]);
            y = Math.min(y, op[1]);
        }
        return x * y;
    }

}

性能

81.搜索旋转排序数组II

目标

已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同。

在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转 ,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,4,4,5,6,6,7] 在下标 5 处经旋转后可能变为 [4,5,6,6,7,0,1,2,4,4] 。

给你 旋转后 的数组 nums 和一个整数 target ,请你编写一个函数来判断给定的目标值是否存在于数组中。如果 nums 中存在这个目标值 target ,则返回 true ,否则返回 false 。

你必须尽可能减少整个操作步骤。

示例 1:

输入:nums = [2,5,6,0,0,1,2], target = 0
输出:true

示例 2:

输入:nums = [2,5,6,0,0,1,2], target = 3
输出:false

说明:

  • 1 <= nums.length <= 5000
  • -10^4 <= nums[i] <= 10^4
  • 题目数据保证 nums 在预先未知的某个下标上进行了旋转
  • -10^4 <= target <= 10^4

进阶:

此题与 33.搜索旋转排序数组 相似,但本题中的 nums 可能包含 重复 元素。这会影响到程序的时间复杂度吗?会有怎样的影响,为什么?

思路

有序数组 划分为两个子数组,交换子数组的顺序得到旋转数组 nums,判断旋转数组中是否存在 target

根据题意可知,原来的有序数组被划分成两部分,第一部分的所有元素均大于 等于 第二部分的所有元素。

此题与 33.搜索旋转排序数组 相似,但本题中的 nums 可能包含 重复 元素。如果当前元素恰好与切点的元素值相同,那么我们无法判断该搜索哪一部分。

例如,如果当前元素值大于 target,但是恰好与第一个元素相同:

  • 如果当前元素就是位于第一部分,那么我们应该将 left 左移,以便到达第二部分搜索。
  • 如果当前元素已经位于第二部分,那么我们应该将 right 右移,以便找到更小的target。

最简单的处理方法是缩小右边界,因为这种情况只会出现在切点刚好在连续相同元素中间,这时最左侧的元素一定与最右侧的元素相同,我们可以提前将 right 移到第一个与 left 不同的位置。这样当前元素属于哪一部分就确定了,不会影响判断。

代码


/**
 * @date 2025-02-01 14:33
 */
public class Search81 {

    public boolean search(int[] nums, int target) {
        int n = nums.length;
        int left = 0, right = n - 1;
        while (right > 0 && nums[left] == nums[right]) {
            right--;
        }
        int mid = left + (right - left) / 2;
        while (left <= right) {
            if (check(nums[mid], nums[0], target)) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
            mid = left + (right - left) / 2;
        }
        if (left >= 0 && left < n) {
            return nums[left] == target;
        }
        return false;
    }

    public boolean check(int midValue, int firstValue, int target) {
        if (target < firstValue) {
            if (midValue >= firstValue) {
                return true;
            } else {
                return midValue < target;
            }
        } else {
            if (midValue >= firstValue) {
                return midValue < target;
            } else {
                return false;
            }
        }
    }

}

性能