3218.切蛋糕的最小总开销 I

目标

有一个 m x n 大小的矩形蛋糕,需要切成 1 x 1 的小块。

给你整数 m ,n 和两个数组:

  • horizontalCut 的大小为 m - 1 ,其中 horizontalCut[i] 表示沿着水平线 i 切蛋糕的开销。
  • verticalCut 的大小为 n - 1 ,其中 verticalCut[j] 表示沿着垂直线 j 切蛋糕的开销。

一次操作中,你可以选择任意不是 1 x 1 大小的矩形蛋糕并执行以下操作之一:

  1. 沿着水平线 i 切开蛋糕,开销为 horizontalCut[i] 。
  2. 沿着垂直线 j 切开蛋糕,开销为 verticalCut[j] 。

每次操作后,这块蛋糕都被切成两个独立的小蛋糕。

每次操作的开销都为最开始对应切割线的开销,并且不会改变。

请你返回将蛋糕全部切成 1 x 1 的蛋糕块的 最小 总开销。

示例 1:

输入:m = 3, n = 2, horizontalCut = [1,3], verticalCut = [5]
输出:13
解释:
沿着垂直线 0 切开蛋糕,开销为 5 。
沿着水平线 0 切开 3 x 1 的蛋糕块,开销为 1 。
沿着水平线 0 切开 3 x 1 的蛋糕块,开销为 1 。
沿着水平线 1 切开 2 x 1 的蛋糕块,开销为 3 。
沿着水平线 1 切开 2 x 1 的蛋糕块,开销为 3 。
总开销为 5 + 1 + 1 + 3 + 3 = 13 。

示例 2:

输入:m = 2, n = 2, horizontalCut = [7], verticalCut = [4]
输出:15
解释:
沿着水平线 0 切开蛋糕,开销为 7 。
沿着垂直线 0 切开 1 x 2 的蛋糕块,开销为 4 。
沿着垂直线 0 切开 1 x 2 的蛋糕块,开销为 4 。
总开销为 7 + 4 + 4 = 15 。

说明:

  • 1 <= m, n <= 20
  • horizontalCut.length == m - 1
  • verticalCut.length == n - 1
  • 1 <= horizontalCut[i], verticalCut[i] <= 10^3

思路

有一块 m x n 的蛋糕,horizontalCut[i] 表示水平切第 i 行的开销,verticalCut[i] 表示垂直切第 i 列的开销。求将蛋糕切成 1 x 1 小块的最小代价。

需要注意每次切的蛋糕必须是整块的,并不能将几块蛋糕排到一起切。

我们应该先沿着代价最大的位置切吗?比如大小为 2 x 100 的蛋糕,水平切的代价为 99,垂直切每一列的代价为 100。先切每一列代价为 99 * 100,然后对切开的 100 块水平切 100 次,代价为 100 * 99,总代价为 2 * 99 * 100。如果先水平切一次,代价为 99。然后需要垂直切 2 * 99 次,代价为 2 * 99 * 100,总代价为 99 + 2 * 99 * 100。这种贪心策略应该是可行的,因为每切一次块数会增加,现在不切代价大的,后面再切的时候代价会增加。

选择沿某一水平或垂直线切割时,需要记录水平 和 垂直方向蛋糕块的数量,用来计算代价。每切一次,横向与纵向的蛋糕块就会增加一个。

刚开始不确定能否使用贪心策略,考虑如何表示哪些切过了,哪些没切,卡了很久。关键点是如何将问题抽象建模,使用分治思想,不要面向过程。每切一次之后,问题转化为切剩余蛋糕的子问题。我们可以使用记忆化搜索解空间,求出最小值。

代码


/**
 * @date 2024-12-25 10:41
 */
public class MinimumCost3218 {

    public int minimumCost_v1(int m, int n, int[] horizontalCut, int[] verticalCut) {
        int horizontalCutPart = 1;
        int verticalCutPart = 1;
        Arrays.sort(horizontalCut);
        Arrays.sort(verticalCut);
        int h = horizontalCut.length - 1;
        int v = verticalCut.length - 1;
        int res = 0;
        while (h >= 0 || v >= 0) {
            if (h < 0){
                res += horizontalCutPart * verticalCut[v];
                v--;
                continue;
            }
            if (v < 0){
                res += verticalCutPart * horizontalCut[h];
                h--;
                continue;
            }
            if (horizontalCut[h] > verticalCut[v]) {
                res += verticalCutPart * horizontalCut[h];
                horizontalCutPart++;
                h--;
            } else if (horizontalCut[h] <= verticalCut[v]) {
                res += horizontalCutPart * verticalCut[v];
                verticalCutPart++;
                v--;
            }
        }

        return res;
    }

    int[] rowCost;
    int[] colCost;
    int[][][][] mem;

    public int minimumCost(int m, int n, int[] horizontalCut, int[] verticalCut) {
        this.rowCost = horizontalCut;
        this.colCost = verticalCut;
        mem = new int[m + 1][m + 1][n + 1][n + 1];
        // rowStart rowEnd colStart colEnd 表示蛋糕的边界
        //   0   1   2   3   4   5  ... n
        // 0  ———————————————————
        //   |   |   |   |   |   |
        // 1  ———————————————————
        //   |   |   |   |   |   |
        // 2  ———————————————————
        //   |   |   |   |   |   |
        // 3 ———————————————————
        //   |   |   |   |   |   |
        // 4 ———————————————————
        //   |   |   |   |   |   |
        // 5  ———————————————————
        // ...
        // m
        return dfs(0, m, 0, n);
    }

    public int dfs(int rowStart, int rowEnd, int colStart, int colEnd) {
        if (rowEnd - rowStart == 1 && colEnd - colStart == 1) {
            return 0;
        }
        int res = Integer.MAX_VALUE;
        for (int i = rowStart + 1; i < rowEnd; i++) {
            if (mem[rowStart][i][colStart][colEnd] == 0) {
                mem[rowStart][i][colStart][colEnd] = dfs(rowStart, i, colStart, colEnd);
            }
            if (mem[i][rowEnd][colStart][colEnd] == 0) {
                mem[i][rowEnd][colStart][colEnd] = dfs(i, rowEnd, colStart, colEnd);
            }
            res = Math.min(res, rowCost[i - 1] + mem[rowStart][i][colStart][colEnd] + mem[i][rowEnd][colStart][colEnd]);
        }
        for (int i = colStart + 1; i < colEnd; i++) {
            if (mem[rowStart][rowEnd][colStart][i] == 0) {
                mem[rowStart][rowEnd][colStart][i] = dfs(rowStart, rowEnd, colStart, i);
            }
            if (mem[rowStart][rowEnd][i][colEnd] == 0) {
                mem[rowStart][rowEnd][i][colEnd] = dfs(rowStart, rowEnd, i, colEnd);
            }
            res = Math.min(res, colCost[i - 1] + mem[rowStart][rowEnd][colStart][i] + mem[rowStart][rowEnd][i][colEnd]);
        }
        return res;
    }

}

性能