688.骑士在棋盘上的概率

目标

在一个 n x n 的国际象棋棋盘上,一个骑士从单元格 (row, column) 开始,并尝试进行 k 次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0) ,右下单元格是 (n - 1, n - 1) 。

象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。

每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。

骑士继续移动,直到它走了 k 步或离开了棋盘。

返回 骑士在棋盘停止移动后仍留在棋盘上的概率 。

示例 1:

输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。

示例 2:

输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000

说明:

  • 1 <= n <= 25
  • 0 <= k <= 100
  • 0 <= row, column <= n - 1

思路

n x n 棋盘上的 (row, column) 位置上有一个骑士(坐标从 0 开始),求它朝 8 个方向任意走 k 次还停留在棋盘上的概率是多少。所谓的 8 个方向类似中国象棋中的马走 ,不过没有蹩马腿的限制。

定义 dp[i][j][k] 表示当前在 (i, j)k 步后最终在棋盘上的概率。初始 dp[i][j][0] = 1dp[i][j][k] = Σdp[.][.][k - 1] / 8,最终的结果为 dp[row][column][k]

代码


/**
 * @date 2024-12-07 20:48
 */
public class KnightProbability688 {

    public double knightProbability(int n, int k, int row, int column) {
        int[][] direction = new int[][]{{-1, -2}, {-2, -1}, {-1, 2}, {-2, 1}, {1, 2}, {2, 1}, {1, -2}, {2, -1}};
        double[][][] dp = new double[n][n][k + 1];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                dp[i][j][0] = 1.0;
            }
        }
        for (int step = 1; step <= k; step++) {
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    for (int d = 0; d < 8; d++) {
                        int dx = direction[d][0];
                        int dy = direction[d][1];
                        int x = i + dx;
                        int y = j + dy;
                        if (x >= 0 && x < n && y >= 0 && y < n) {
                            dp[i][j][step] += dp[x][y][step - 1];
                        }
                    }
                    dp[i][j][step] /= 8;
                }
            }
        }
        return dp[row][column][k];
    }

}

性能

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注