3206.交替组I

目标

给你一个整数数组 colors ,它表示一个由红色和蓝色瓷砖组成的环,第 i 块瓷砖的颜色为 colors[i] :

  • colors[i] == 0 表示第 i 块瓷砖的颜色是 红色 。
  • colors[i] == 1 表示第 i 块瓷砖的颜色是 蓝色 。

环中连续 3 块瓷砖的颜色如果是 交替 颜色(也就是说中间瓷砖的颜色与它 左边 和 右边 的颜色都不同),那么它被称为一个 交替 组。

请你返回 交替 组的数目。

注意 ,由于 colors 表示一个 环 ,第一块 瓷砖和 最后一块 瓷砖是相邻的。

示例 1:

输入:colors = [1,1,1]
输出:0

解释:

示例 2:

输入:colors = [0,1,0,0,1]
输出:3

解释:

交替组包括:

说明:

  • 3 <= colors.length <= 100
  • 0 <= colors[i] <= 1

思路

有一个环形二进制数组(认为首尾相邻),判断存在多少个交替组,如果元素与它左右相邻的两个元素值不相等,称这三个元素为一个交替组。

直接模拟判断即可,第一个元素的左邻居以及最后一个元素的右邻居需要特殊处理。也可以通过取模统一处理,定义 i 的初值为 ni < 2n,循环内下标使用 (i - 1) % ni % n(i + 1) % n,不过没有必要对循环内的所有下标进行模运算,特殊处理效率更高。

官网题解循环使用的初值是 0i < n,不过循环内部计算的是 (i - 1 + n) % ni(i + 1) % n,节省了两次 i % n 取余运算。

代码

/**
 * @date 2024-11-26 8:56
 */
public class NumberOfAlternatingGroups3206 {

    public int numberOfAlternatingGroups_v1(int[] colors) {
        int n = colors.length;
        int res = 0;
        boolean b = colors[n - 1] != colors[0];
        if (colors[0] != colors[1] && b) {
            res++;
        }
        if (colors[n - 1] != colors[n - 2] && b) {
            res++;
        }
        for (int i = 1; i < n - 1; i++) {
            if (colors[i - 1] != colors[i] && colors[i + 1] != colors[i]) {
                res++;
            }
        }
        return res;
    }

    public int numberOfAlternatingGroups(int[] colors) {
        int n = colors.length;
        int res = 0;
        for (int i = n; i < 2 * n; i++) {
            if (colors[(i - 1) % n] != colors[i % n] && colors[(i + 1) % n] != colors[i % n]) {
                res++;
            }
        }
        return res;
    }
}

性能