3233.统计不是特殊数字的数字数量

目标

给你两个 正整数 l 和 r。对于任何数字 x,x 的所有正因数(除了 x 本身)被称为 x 的 真因数。

如果一个数字恰好仅有两个 真因数,则称该数字为 特殊数字。例如:

  • 数字 4 是 特殊数字,因为它的真因数为 1 和 2。
  • 数字 6 不是 特殊数字,因为它的真因数为 1、2 和 3。

返回区间 [l, r] 内 不是 特殊数字 的数字数量。

示例 1:

输入: l = 5, r = 7
输出: 3
解释:
区间 [5, 7] 内不存在特殊数字。

示例 2:

输入: l = 4, r = 16
输出: 11
解释:
区间 [4, 16] 内的特殊数字为 4 和 9。

说明:

  • 1 <= l <= r <= 10^9

提示:

  • A special number must be a square of a prime number.
  • We need to find all primes in the range [sqrt(l), sqrt(r)].
  • Use sieve to find primes till sqrt(10^9).

思路

返回给定区间 [l, r] 内不是特殊数字的数字个数,所谓特殊数字指除了它本身恰好有两个正因数的数字。

一看到数据范围是 10^9 就不可能使用使用暴力解法去判断每一个数字是不是 lr 的因数,要么使用二分要么预处理。特殊数字是确定的,它除了自身以外只有两个因数,1 一定是一个,即除了 1 和它本身只有一个因数。看了提示说特殊数字是质数的平方,我们需要找到所有在 [√l, √r] 范围内的质数,可以预处理 √10^9 内的质数。二分查找 [l, r] 范围内质数的个数,然后减掉即可。

埃氏筛的基本思想是创建一个 boolean[] 标记查询范围内的数是否为质数,初始时均标记为 true。从 2 开始遍历(01 后面直接过滤掉了),直到 i < √endi * i < end。在循环内部,如果当前值是质数,则将 i * i,i * (i + 1),i * (i + 2),…… 标记为非质数。比如在 2 的循环内,所有大于 2 的偶数都被标为非质数,以此类推,像筛子一样将质数筛选出来。

// todo 最后也可以使用前缀和计算个数

代码


/**
 * @date 2024-11-22 9:07
 */
public class NonSpecialCount3233 {

    public static int[] primes;

    static {
        List<Integer> primeList = new ArrayList<>();
        int end = (int) Math.ceil(Math.sqrt(1000000001));
        boolean[] isPrime = new boolean[end + 1];
        Arrays.fill(isPrime, true);
        for (int i = 2; i * i <= end; i++) {
            if (isPrime[i]) {
                for (int j = i * i; j <= end; j += i) {
                    isPrime[j] = false;
                }
            }
        }
        // 前面没有将 isPrime[0] isPrime[1] 置为false,这里从2开始
        for (int i = 2; i <= end; i++) {
            if (isPrime[i]) {
                primeList.add(i);
            }
        }
        int cnt = primeList.size();
        primes = new int[cnt];
        for (int i = 0; i < cnt; i++) {
            primes[i] = primeList.get(i);
        }
    }

    public int nonSpecialCount_v1(int l, int r) {
        int ceilLeft = (int) Math.ceil(Math.sqrt(l));
        int right = (int) Math.sqrt(r);
        if (ceilLeft > right) {
            return r - l + 1;
        }
        int a = Arrays.binarySearch(primes, ceilLeft);
        if (a < 0) {
            // 获取插入点,说明原来该位置的值大于ceilLeft
            a = -a - 1;
        }
        int b = Arrays.binarySearch(primes, right);
        if (b < 0) {
            // 这里多减了1,因为插入点是第一个大于right的位置,减1则小于 right
            b = -b - 2;
        }
//        return r - l + 1 - (b - a + 1);
        return r - l - b + a;
    }

}

性能