1870.准时到达的列车最小时速

目标

给你一个浮点数 hour ,表示你到达办公室可用的总通勤时间。要到达办公室,你必须按给定次序乘坐 n 趟列车。另给你一个长度为 n 的整数数组 dist ,其中 dist[i] 表示第 i 趟列车的行驶距离(单位是千米)。

每趟列车均只能在整点发车,所以你可能需要在两趟列车之间等待一段时间。

  • 例如,第 1 趟列车需要 1.5 小时,那你必须再等待 0.5 小时,搭乘在第 2 小时发车的第 2 趟列车。

返回能满足你准时到达办公室所要求全部列车的 最小正整数 时速(单位:千米每小时),如果无法准时到达,则返回 -1 。

生成的测试用例保证答案不超过 10^7 ,且 hour 的 小数点后最多存在两位数字 。

示例 1:

输入:dist = [1,3,2], hour = 6
输出:1
解释:速度为 1 时:
- 第 1 趟列车运行需要 1/1 = 1 小时。
- 由于是在整数时间到达,可以立即换乘在第 1 小时发车的列车。第 2 趟列车运行需要 3/1 = 3 小时。
- 由于是在整数时间到达,可以立即换乘在第 4 小时发车的列车。第 3 趟列车运行需要 2/1 = 2 小时。
- 你将会恰好在第 6 小时到达。

示例 2:

输入:dist = [1,3,2], hour = 2.7
输出:3
解释:速度为 3 时:
- 第 1 趟列车运行需要 1/3 = 0.33333 小时。
- 由于不是在整数时间到达,故需要等待至第 1 小时才能搭乘列车。第 2 趟列车运行需要 3/3 = 1 小时。
- 由于是在整数时间到达,可以立即换乘在第 2 小时发车的列车。第 3 趟列车运行需要 2/3 = 0.66667 小时。
- 你将会在第 2.66667 小时到达。

示例 3:

输入:dist = [1,3,2], hour = 1.9
输出:-1
解释:不可能准时到达,因为第 3 趟列车最早是在第 2 小时发车。

说明:

  • n == dist.length
  • 1 <= n <= 10^5
  • 1 <= dist[i] <= 10^5
  • 1 <= hour <= 10^9
  • hours 中,小数点后最多存在两位数字

思路

从家到办公室需要依次乘坐 n 趟列车,列车只在整点发车,已知每趟车的行驶距离 dist[i],问在给定通勤时间 hour 内到达办公室,列车的最低时速是多少,取正整数,如果无法按时到达返回 -1

我们假设时速为 v,那么到达办公室的时间为 cost = Σ⌈dist[i]/v⌉ + dist[n-1]/v 前面 n - 1 趟车通勤时间需要考虑等车时间,所以要向上取整,最后一趟车则不需要向上取整。我们只需要满足cost <= hour 即可。由于时速需要取正整数,那么 v 也应该向上取整。

这道题的难点在于如何在 v 未知的情况下,向上取整后再求和,没办法直接计算。只能搜索解空间了,我们可以估算出 v 的取值范围,然后使用二分查找代入式子计算并与 hour 比较。v 的下界为 Σdist[i]/hour,上界是 max(dist[i]) * 100,这相当于是一趟车最大的距离除以最小的时间,如果这个速度还赶不上,那就赶不上了。

求和的时间复杂度为 O(n)n 最大 10^5 ,距离最大 10^5 有可能溢出,应使用 long 类型。二分查找的复杂度为 O(nlogv)v 最大值为 10^10log2(10^10) ≈ 33.2,总的规模为 10 ^ 6 可行。

代码


/**
 * @date 2024-10-02 21:44
 */
public class MinSpeedOnTime1870 {

    public int minSpeedOnTime(int[] dist, double hour) {
        long sum = 0;
        for (int value : dist) {
            sum += value;
        }
        int v = (int) Math.ceil(sum / hour - 0.5);
        long l = v, r = 200 * sum, m = l + (r - l) / 2;
        while (l <= r) {
            if (check(dist, hour, m)) {
                r = m - 1;
            } else {
                l = m + 1;
            }
            m = l + (r - l) / 2;
        }
        return l > 200 * sum ? -1 : (int)l;
    }

    private boolean check(int[] dist, double hour, long m) {
        int n = dist.length;
        double cost = 0;
        for (int i = 0; i < n - 1; i++) {
            cost += Math.ceil((double) dist[i] / m);
        }
        cost += (double) dist[n - 1] / m;
        return cost <= hour;
    }

}

性能

983.最低票价

目标

在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行。在接下来的一年里,你要旅行的日子将以一个名为 days 的数组给出。每一项是一个从 1 到 365 的整数。

火车票有 三种不同的销售方式 :

  • 一张 为期一天 的通行证售价为 costs[0] 美元;
  • 一张 为期七天 的通行证售价为 costs[1] 美元;
  • 一张 为期三十天 的通行证售价为 costs[2] 美元。

通行证允许数天无限制的旅行。 例如,如果我们在第 2 天获得一张 为期 7 天 的通行证,那么我们可以连着旅行 7 天:第 2 天、第 3 天、第 4 天、第 5 天、第 6 天、第 7 天和第 8 天。

返回 你想要完成在给定的列表 days 中列出的每一天的旅行所需要的最低消费 。

示例 1:

输入:days = [1,4,6,7,8,20], costs = [2,7,15]
输出:11
解释: 
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划:
在第 1 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 1 天生效。
在第 3 天,你花了 costs[1] = $7 买了一张为期 7 天的通行证,它将在第 3, 4, ..., 9 天生效。
在第 20 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 20 天生效。
你总共花了 $11,并完成了你计划的每一天旅行。

示例 2:

输入:days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]
输出:17
解释:
例如,这里有一种购买通行证的方法,可以让你完成你的旅行计划: 
在第 1 天,你花了 costs[2] = $15 买了一张为期 30 天的通行证,它将在第 1, 2, ..., 30 天生效。
在第 31 天,你花了 costs[0] = $2 买了一张为期 1 天的通行证,它将在第 31 天生效。 
你总共花了 $17,并完成了你计划的每一天旅行。

说明:

  • 1 <= days.length <= 365
  • 1 <= days[i] <= 365
  • days 按顺序严格递增
  • costs.length == 3
  • 1 <= costs[i] <= 1000

思路

有一个严格递增的出行计划表 daysdays[i] 表示计划在这一天出行。出行需要持有通行证,通行证有三种,1 天有效期,7 天有效期,30 天有效期,价格各不相同。求完成出行计划所需的最低花费。

定义 dp[i] 表示截止到第 i 天的最小花费,初始化数组大小为 days[n - 1] + 1

  • 如果第 i 天需要出行,dp[i] = Math.min(dp[i - 1] + cost[0], dp[i - 7] + cost[1], dp[i - 30] + cost[2])
  • 否则,dp[i] = dp[i - 1]

网友最快题解定义 dp[i] 为旅行了 i 天的最小花费,这样与 days[i] 的数据范围无关,仅与出行天数 days.length 有关。

代码


/**
 * @date 2024-10-01 20:43
 */
public class MincostTickets983 {

    /**
     * 针对 前面方法 的优化
     * 去掉初始化 dp[i] 为截止到第i天 使用一天票的总花费,
     * 使用数组记录是否出行
     */
    public int mincostTickets_v1(int[] days, int[] costs) {
        int n = days.length;
        int end = days[n - 1];
        int[] dp = new int[end + 1];
        boolean[] isTravel = new boolean[end + 1];
        for (int day : days) {
            isTravel[day] = true;
        }
        for (int i = 1; i <= end; i++) {
            int tmp7 = Math.max(0, i - 7);
            int tmp30 = Math.max(0, i - 30);
            if (isTravel[i]) {
                dp[i] = Math.min(dp[i - 1] + costs[0], dp[tmp7] + costs[1]);
                dp[i] = Math.min(dp[i], dp[tmp30] + costs[2]);
            } else {
                dp[i] = dp[i - 1];
            }
        }
        return dp[end];
    }

    public int mincostTickets(int[] days, int[] costs) {
        int n = days.length;
        int end = days[n - 1];
        int[] dp = new int[end + 1];
        int last = 0;
        int index = 0;
        Set<Integer> set = new HashSet<>(n);
        for (int day : days) {
            set.add(day);
            while (index < day) {
                dp[index++] = last;
            }
            dp[day] += last + costs[0];
            last = dp[day];
        }
        for (int i = 1; i <= end; i++) {
            int tmp7 = Math.max(0, i - 7);
            int tmp30 = Math.max(0, i - 30);
            if (!set.contains(i)) {
                dp[i] = dp[i - 1];
            } else {
                dp[i] = Math.min(dp[i - 1] + costs[0], dp[tmp7] + costs[1]);
                dp[i] = Math.min(dp[i], dp[tmp30] + costs[2]);
            }
        }
        return dp[end];
    }

}

性能

  • 去掉 dp[i] 的初始化,刚开始写的是将其初始化为截止到第 i 天使用一天票的总花费
  • 使用数组记录是否出行