3165.不包含相邻元素的子序列的最大和

目标

给你一个整数数组 nums 和一个二维数组 queries,其中 queries[i] = [posi, xi]。

对于每个查询 i,首先将 nums[posi] 设置为 xi,然后计算查询 i 的答案,该答案为 nums 中 不包含相邻元素 的 子序列 的 最大 和。

返回所有查询的答案之和。

由于最终答案可能非常大,返回其对 10^9 + 7 取余 的结果。

子序列 是指从另一个数组中删除一些或不删除元素而不改变剩余元素顺序得到的数组。

示例 1:

输入:nums = [3,5,9], queries = [[1,-2],[0,-3]]
输出:21
解释:
执行第 1 个查询后,nums = [3,-2,9],不包含相邻元素的子序列的最大和为 3 + 9 = 12。
执行第 2 个查询后,nums = [-3,-2,9],不包含相邻元素的子序列的最大和为 9 。

示例 2:

输入:nums = [0,-1], queries = [[0,-5]]
输出:0
解释:
执行第 1 个查询后,nums = [-5,-1],不包含相邻元素的子序列的最大和为 0(选择空子序列)。

说明:

  • 1 <= nums.length <= 5 * 10^4
  • -10^5 <= nums[i] <= 10^5
  • 1 <= queries.length <= 5 * 10^4
  • queries[i] == [posi, xi]
  • 0 <= posi <= nums.length - 1
  • -10^5 <= xi <= 10^5

思路

// todo

代码

性能

3216.交换后字典序最小的字符串

目标

给你一个仅由数字组成的字符串 s,在最多交换一次 相邻 且具有相同 奇偶性 的数字后,返回可以得到的 字典序 最小的字符串。

如果两个数字都是奇数或都是偶数,则它们具有相同的奇偶性。例如,5 和 9、2 和 4 奇偶性相同,而 6 和 9 奇偶性不同。

示例 1:

输入: s = "45320"
输出: "43520"
解释:
s[1] == '5' 和 s[2] == '3' 都具有相同的奇偶性,交换它们可以得到字典序最小的字符串。

示例 2:

输入: s = "001"
输出: "001"
解释:
无需进行交换,因为 s 已经是字典序最小的。

说明:

  • 2 <= s.length <= 100
  • s 仅由数字组成。

思路

有一个仅由数字组成的字符串 s,最多可以执行一次操作,交换字符串中相邻并且奇偶性相同的元素,返回可以得到的字典序最小的字符串。

实际上就是交换第一个满足 i < j && s.charAt(i) - '0' > s.charAt(j) - '0 && (s.charAt(i) - '0') % 2 == (s.charAt(j) - '0') % 2 的相邻字符。

注意到 0 的 ASCII码为 48,数字的 ASCII码的奇偶性与数字本身的奇偶性相同,并且数字大的对应的 ASCII 码也大,不影响判断,可以不用减字符 '0'。

代码


/**
 * @date 2024-10-30 0:11
 */
public class GetSmallestString3216 {

    public String getSmallestString(String s) {
        char[] chars = s.toCharArray();
        int n = s.length();
        int prev = s.charAt(0);
        for (int i = 1; i < n; i++) {
            int cur = s.charAt(i);
            if (prev > cur && prev % 2 == cur % 2) {
                chars[i] = s.charAt(i - 1);
                chars[i - 1] = s.charAt(i);
                break;
            }
            prev = cur;
        }
        return new String(chars);
    }

}

性能

3211.生成不含相邻零的二进制字符串

目标

给你一个正整数 n。

如果一个二进制字符串 x 的所有长度为 2 的 子字符串 中包含 至少 一个 "1",则称 x 是一个 有效 字符串。

返回所有长度为 n 的 有效 字符串,可以以任意顺序排列。

示例 1:

输入: n = 3
输出: ["010","011","101","110","111"]
解释:
长度为 3 的有效字符串有:"010"、"011"、"101"、"110" 和 "111"。

示例 2:

输入: n = 1
输出: ["0","1"]
解释:
长度为 1 的有效字符串有:"0" 和 "1"。

说明:

  • 1 <= n <= 18

思路

示例2让人困惑,字符串 0 并没有长度为 2 的子字符串,更别提包含至少一个 1 了,但它是有效字符串。

还是按照题目名称来做吧,生成长度为 n,不含相邻零的二进制字符串。直接回溯即可。

官网题解还提出了一种位运算的解法,主要思想就是将 二进制字符串 视为 数字的二进制表示,问题转化为 0 ~ 2^n - 1 的数字中不含相邻零的个数。由于超出 n 的位数不在我们的考虑范围,为了简化处理,可以直接将数字的低 n 位取反,x ^ ((1 << n) - 1))1 << n0 开始计向左移 n 位,再减 1,得到低 n 位全为 1 的数字,对它取异或相当于低 n 位取反。问题转换为 数字中是否存在连续的 1。针对每一个数字,无需遍历每一位,直接使用 x & (x >> 1) 是否等于 0 来判断是否含有相邻的 1。相当于将每一位与它前面的位相与,如果存在相邻的 1 就会存在某个位相与的结果为 1 使最终结果不为 0

代码


/**
 * @date 2024-10-29 0:23
 */
public class ValidStrings3211 {
    List<String> res;
    char[] path;
    int n;

    public List<String> validStrings(int n) {
        res = new ArrayList<>();
        path = new char[n];
        this.n = n;
        backTracing('1', 0);
        return res;
    }

    public void backTracing(char prev, int i) {
        if (i == n) {
            res.add(new String(path));
            return;
        }
        path[i] = '1';
        int next = i + 1;
        backTracing('1', next);
        if (prev != '0') {
            path[i] = '0';
            backTracing('0', next);
        }
    }
}

性能

685.冗余连接II

目标

在本问题中,有根树指满足以下条件的 有向 图。该树只有一个根节点,所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节点都有且只有一个父节点,而根节点没有父节点。

输入一个有向图,该图由一个有着 n 个节点(节点值不重复,从 1 到 n)的树及一条附加的有向边构成。附加的边包含在 1 到 n 中的两个不同顶点间,这条附加的边不属于树中已存在的边。

结果图是一个以边组成的二维数组 edges 。 每个元素是一对 [ui, vi],用以表示 有向 图中连接顶点 ui 和顶点 vi 的边,其中 ui 是 vi 的一个父节点。

返回一条能删除的边,使得剩下的图是有 n 个节点的有根树。若有多个答案,返回最后出现在给定二维数组的答案。

示例 1:

输入:edges = [[1,2],[1,3],[2,3]]
输出:[2,3]

示例 2:

输入:edges = [[1,2],[2,3],[3,4],[4,1],[1,5]]
输出:[4,1]

说明:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ui, vi <= n

思路

有一颗 n 个节点的树,节点编号 1 ~ n。使用 edges 表示向树中两个没有直接连接的节点之间加一条边之后的边的集合,找出一条可以删除的边使得 edges 变为一颗有 n 个节点的树。如果有多种选择,返回 edges 中最后出现的那个,即下标最大的边。与 冗余连接 不同的是 edges有向边 的集合。

如果直接使用昨天无向图寻找环的做法会有两个问题:

  • 无法处理 a -> b, b -> a 的情况,因为在无向图中为了防止环,直接回避了这种情况
  • 并不是删去环上任意一条边都可以的,因为边是有向的,如果某个节点出现两个父节点,那么一定要删去以该节点为终点的边

官网题解使用的还是并查集。// todo

代码


/**
 * @date 2024-10-28 8:51
 */
public class FindRedundantDirectedConnection685 {

    List<Integer>[] g;
    Set<Integer> loop;
    List<Integer> path;
    int start;
    int end;

    public int[] findRedundantDirectedConnection(int[][] edges) {
        int n = edges.length;
        g = new List[n + 1];
        for (int i = 0; i <= n; i++) {
            g[i] = new ArrayList<>();
        }
        int[] degree = new int[n + 1];
        Set<Integer> e = new HashSet<>(n);
        int end = -1;
        int[] self = null;
        for (int[] edge : edges) {
            int from = edge[0];
            int to = edge[1];
            int fromto = from << 10 | to;
            int tofrom = to << 10 | from;
            if (e.contains(fromto)) {
                self = new int[]{from, to};
            }
            e.add(fromto);
            e.add(tofrom);
            g[from].add(to);
            g[to].add(from);
            if (degree[to] == 1) {
                end = to;
            } else {
                degree[to]++;
            }
        }

        if (self != null) {
            if (end == -1) {
                for (int i = n - 1; i >= 0; i--) {
                    if ((self[0] == edges[i][0] && edges[i][1] == self[1])
                            || (self[0] == edges[i][1] && edges[i][0] == self[1])) {
                        return edges[i];
                    }
                }
            } else {
                return new int[]{self[0] == end ? self[1] : self[0], end};
            }

        }

        loop = new HashSet<>(n);
        path = new ArrayList<>();
        loop.add(1);
        path.add(1);
        dfs(0, 1);
        loop = new HashSet<>();
        for (int i = path.size() - 1; i >= 0; i--) {
            loop.add(path.get(i));
            if (start == path.get(i)) {
                break;
            }
        }
        if (end == -1) {
            for (int i = n - 1; i >= 0; i--) {
                if (loop.contains(edges[i][0]) && loop.contains(edges[i][1])) {
                    return edges[i];
                }
            }
        } else {
            for (int i = n - 1; i >= 0; i--) {
                if (edges[i][1] == end && loop.contains(edges[i][0])) {
                    return edges[i];
                }
            }
        }

        return null;
    }

    private boolean dfs(int parent, int current) {
        for (Integer next : g[current]) {
            if (next == parent) {
                continue;
            }
            if (loop.contains(next)) {
                start = next;
                return true;
            } else {
                loop.add(next);
                path.add(next);
                if (dfs(current, next)) {
                    return true;
                }
                path.remove(path.size() - 1);
                loop.remove(next);
            }
        }
        return false;
    }

}

性能

684.冗余连接

目标

树可以看成是一个连通且 无环 的 无向 图。

给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。

请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的那个。

示例 1:

输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]

示例 2:

输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]

说明:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ai < bi <= edges.length
  • ai != bi
  • edges 中无重复元素
  • 给定的图是连通的

思路

有一颗 n 个节点的树,节点编号 1 ~ n。使用 edges 表示向树中两个没有直接连接的节点之间加一条边之后的边的集合,找出一条可以删除的边使得 edges 变为一颗有 n 个节点的树。如果有多种选择,返回 edges 中最后出现的那个,即下标最大的边。

我们可以选择一个根节点,比如从节点 1 出发,使用回溯记录已经访问过的节点,如果发现回到已访问过的非父节点说明出现了环。如果只是寻找环的上的任一条边的话,直接返回即可。

麻烦点在于题目要求返回 edges 中最后出现的边,因此我们需要记录访问的路径,从环开始的节点往后的节点都是在环上的。最后从后向前遍历 edges 找到第一个两端点都在环上的边。

官网题解使用的是并查集。// todo

代码


/**
 * @date 2024-10-27 16:34
 */
public class FindRedundantConnection684 {
    List<Integer>[] g;
    Set<Integer> loop;
    List<Integer> path;
    int start;

    public int[] findRedundantConnection(int[][] edges) {
        int n = edges.length;
        g = new List[n + 1];
        for (int i = 0; i <= n; i++) {
            g[i] = new ArrayList<>();
        }
        for (int[] edge : edges) {
            g[edge[0]].add(edge[1]);
            g[edge[1]].add(edge[0]);
        }
        loop = new HashSet<>(n);
        path = new ArrayList<>();
        dfs(0, 1);
        loop = new HashSet<>();
        for (int i = path.size() - 1; i >= 0; i--) {
            loop.add(path.get(i));
            if (start == path.get(i)) {
                break;
            }
        }
        for (int i = n - 1; i >= 0; i--) {
            if (loop.contains(edges[i][0]) && loop.contains(edges[i][1])) {
                return edges[i];
            }
        }
        return null;
    }

    private boolean dfs(int parent, int current) {
        for (Integer next : g[current]) {
            if (next == parent) {
                continue;
            }
            if (loop.contains(next)) {
                start = next;
                return true;
            } else {
                loop.add(next);
                path.add(next);
                if (dfs(current, next)) {
                    return true;
                }
                path.remove(path.size() - 1);
                loop.remove(next);
            }
        }
        return false;
    }

}

性能

3181.执行操作可获得的最大总奖励II

目标

给你一个整数数组 rewardValues,长度为 n,代表奖励的值。

最初,你的总奖励 x 为 0,所有下标都是 未标记 的。你可以执行以下操作 任意次 :

  • 从区间 [0, n - 1] 中选择一个 未标记 的下标 i。
  • 如果 rewardValues[i] 大于 你当前的总奖励 x,则将 rewardValues[i] 加到 x 上(即 x = x + rewardValues[i]),并 标记 下标 i。

以整数形式返回执行最优操作能够获得的 最大 总奖励。

示例 1:

输入:rewardValues = [1,1,3,3]
输出:4
解释:
依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。

示例 2:

输入:rewardValues = [1,6,4,3,2]
输出:11
解释:
依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。

说明:

  • 1 <= rewardValues.length <= 5 * 10^4
  • 1 <= rewardValues[i] <= 5 * 10^4

思路

与昨天的题相比,数据范围变大了。

// todo

代码

性能

3180.执行操作可获得的最大总奖励I

目标

给你一个整数数组 rewardValues,长度为 n,代表奖励的值。

最初,你的总奖励 x 为 0,所有下标都是 未标记 的。你可以执行以下操作 任意次 :

  • 从区间 [0, n - 1] 中选择一个 未标记 的下标 i。
  • 如果 rewardValues[i] 大于 你当前的总奖励 x,则将 rewardValues[i] 加到 x 上(即 x = x + rewardValues[i]),并 标记 下标 i。

以整数形式返回执行最优操作能够获得的 最大 总奖励。

示例 1:

输入:rewardValues = [1,1,3,3]
输出:4
解释:
依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。

示例 2:

输入:rewardValues = [1,6,4,3,2]
输出:11
解释:
依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。

说明:

  • 1 <= rewardValues.length <= 2000
  • 1 <= rewardValues[i] <= 2000

思路

有一个长度为 n 的整数数组 rewardValues 和一个变量 x 初始为 0,可以执行任意次操作,每次操作可以从 [0, n - 1] 中选一个未标记的下标 i,如果 rewardValues[i] > xx += rewardValues[i],并标记 i。求 x 的最大值。

// todo

代码

性能

3175.找到连续赢K场比赛的第一位玩家

目标

有 n 位玩家在进行比赛,玩家编号依次为 0 到 n - 1 。

给你一个长度为 n 的整数数组 skills 和一个 整数 k ,其中 skills[i] 是第 i 位玩家的技能等级。skills 中所有整数 互不相同 。

所有玩家从编号 0 到 n - 1 排成一列。

比赛进行方式如下:

  • 队列中最前面两名玩家进行一场比赛,技能等级 更高 的玩家胜出。
  • 比赛后,获胜者保持在队列的开头,而失败者排到队列的末尾。

这个比赛的赢家是 第一位连续 赢下 k 场比赛的玩家。

请你返回这个比赛的赢家编号。

示例 1:

输入:skills = [4,2,6,3,9], k = 2
输出:2
解释:
一开始,队列里的玩家为 [0,1,2,3,4] 。比赛过程如下:
玩家 0 和 1 进行一场比赛,玩家 0 的技能等级高于玩家 1 ,玩家 0 胜出,队列变为 [0,2,3,4,1] 。
玩家 0 和 2 进行一场比赛,玩家 2 的技能等级高于玩家 0 ,玩家 2 胜出,队列变为 [2,3,4,1,0] 。
玩家 2 和 3 进行一场比赛,玩家 2 的技能等级高于玩家 3 ,玩家 2 胜出,队列变为 [2,4,1,0,3] 。
玩家 2 连续赢了 k = 2 场比赛,所以赢家是玩家 2 。

示例 2:

输入:skills = [2,5,4], k = 3
输出:1
解释:
一开始,队列里的玩家为 [0,1,2] 。比赛过程如下:
玩家 0 和 1 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 [1,2,0] 。
玩家 1 和 2 进行一场比赛,玩家 1 的技能等级高于玩家 2 ,玩家 1 胜出,队列变为 [1,0,2] 。
玩家 1 和 0 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 [1,2,0] 。
玩家 1 连续赢了 k = 3 场比赛,所以赢家是玩家 1 。

说明:

  • n == skills.length
  • 2 <= n <= 10^5
  • 1 <= k <= 10^9
  • 1 <= skills[i] <= 10^6
  • skills 中的整数互不相同。

思路

n 个玩家排成一队并从 0n - 1 编号,有一个元素互不相同的 skills 数组,skills[i] 代表玩家 i 的技能等级,队首的两位玩家进行比赛,技能等级高的胜出,输的排队尾,胜出的玩家接着与队首的玩家比赛,如此循环,问连续赢得 k 场比赛的玩家编号。

由于技能等级互不相同,一定有解,直接按题意模拟即可。但是考虑到 k 最大为 10^9,如果真循环模拟比赛 k 次也会超时。其实只要开始没有出现连胜 k 次的玩家,最后的胜者一定是技能等级最高的,那么后续的比赛一定全胜,直接返回即可。

代码


/**
 * @date 2024-10-24 0:41
 */
public class FindWinningPlayer3175 {

    public int findWinningPlayer(int[] skills, int k) {
        int n = skills.length;
        int cnt = 0;
        int res = 0;
        for (int i = 1; i < n; i++) {
            if (cnt == k) {
                return res;
            }
            if (skills[res] > skills[i]) {
                cnt++;
            } else {
                cnt = 1;
                res = i;
            }
        }
        return res;
    }

}

性能

3175.找到连续赢K场比赛的第一位玩家

目标

有 n 位玩家在进行比赛,玩家编号依次为 0 到 n - 1 。

给你一个长度为 n 的整数数组 skills 和一个 整数 k ,其中 skills[i] 是第 i 位玩家的技能等级。skills 中所有整数 互不相同 。

所有玩家从编号 0 到 n - 1 排成一列。

比赛进行方式如下:

  • 队列中最前面两名玩家进行一场比赛,技能等级 更高 的玩家胜出。
  • 比赛后,获胜者保持在队列的开头,而失败者排到队列的末尾。

这个比赛的赢家是 第一位连续 赢下 k 场比赛的玩家。

请你返回这个比赛的赢家编号。

示例 1:

输入:skills = [4,2,6,3,9], k = 2
输出:2
解释:
一开始,队列里的玩家为 [0,1,2,3,4] 。比赛过程如下:
玩家 0 和 1 进行一场比赛,玩家 0 的技能等级高于玩家 1 ,玩家 0 胜出,队列变为 [0,2,3,4,1] 。
玩家 0 和 2 进行一场比赛,玩家 2 的技能等级高于玩家 0 ,玩家 2 胜出,队列变为 [2,3,4,1,0] 。
玩家 2 和 3 进行一场比赛,玩家 2 的技能等级高于玩家 3 ,玩家 2 胜出,队列变为 [2,4,1,0,3] 。
玩家 2 连续赢了 k = 2 场比赛,所以赢家是玩家 2 。

示例 2:

输入:skills = [2,5,4], k = 3
输出:1
解释:
一开始,队列里的玩家为 [0,1,2] 。比赛过程如下:
玩家 0 和 1 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 [1,2,0] 。
玩家 1 和 2 进行一场比赛,玩家 1 的技能等级高于玩家 2 ,玩家 1 胜出,队列变为 [1,0,2] 。
玩家 1 和 0 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 [1,2,0] 。
玩家 1 连续赢了 k = 3 场比赛,所以赢家是玩家 1 。

说明:

  • n == skills.length
  • 2 <= n <= 10^5
  • 1 <= k <= 10^9
  • 1 <= skills[i] <= 10^6
  • skills 中的整数互不相同。

思路

n 个玩家排成一队并从 0n - 1 编号,有一个元素互不相同的 skills 数组,skills[i] 代表玩家 i 的技能等级,队首的两位玩家进行比赛,技能等级高的胜出,输的排队尾,胜出的玩家接着与队首的玩家比赛,如此循环,问连续赢得 k 场比赛的玩家编号。

由于技能等级互不相同,一定有解,直接按题意模拟即可。但是考虑到 k 最大为 10^9,如果真循环模拟比赛 k 次也会超时。其实只要开始没有出现连胜 k 次的玩家,最后的胜者一定是技能等级最高的,那么后续的比赛一定全胜,直接返回即可。

代码


/**
 * @date 2024-10-24 0:41
 */
public class FindWinningPlayer3175 {

    public int findWinningPlayer(int[] skills, int k) {
        int n = skills.length;
        int cnt = 0;
        int res = 0;
        for (int i = 1; i < n; i++) {
            if (cnt == k) {
                return res;
            }
            if (skills[res] > skills[i]) {
                cnt++;
            } else {
                cnt = 1;
                res = i;
            }
        }
        return res;
    }

}

性能

3185.构成整天的下标对数目II

目标

给你一个整数数组 hours,表示以 小时 为单位的时间,返回一个整数,表示满足 i < j 且 hours[i] + hours[j] 构成 整天 的下标对 i, j 的数目。

整天 定义为时间持续时间是 24 小时的 整数倍 。

例如,1 天是 24 小时,2 天是 48 小时,3 天是 72 小时,以此类推。

示例 1:

输入: hours = [12,12,30,24,24]
输出: 2
解释:
构成整天的下标对分别是 (0, 1) 和 (3, 4)。

示例 2:

输入: hours = [72,48,24,3]
输出: 3
解释:
构成整天的下标对分别是 (0, 1)、(0, 2) 和 (1, 2)。

说明:

  • 1 <= hours.length <= 5 * 10^5
  • 1 <= hours[i] <= 10^9

思路

有一个整数数组 hours,返回 hours[i] + hours[j] % 24 == 0i < j 的下标对的个数。

与昨天的题目 3184.构成整天的下标对数目I 相比,数据规模从 100 变成了 5 * 10^5。枚举下标对的时间复杂度为 O(C(n,2)),即 O(n^2),肯定会超时。

题目并不要求输出具体的下标对,只需要计数即可。当枚举右端点时,如果可以直接获取到已访问过的元素中,能够与当前元素组成合法下标对的元素个数,那么整体的时间复杂度可以降为 O(n)。定义 cnt[m] 表示已访问过的元素中对 24 取余后值为 m 的元素个数。当枚举到元素 i 时,只需累加 cnt[24 - nums[i] % 24] 即可。

代码


/**
 * @date 2024-10-23 10:16
 */
public class CountCompleteDayPairs3185 {

    public long countCompleteDayPairs_v2(int[] hours) {
        long res = 0L;
        int[] cnt = new int[24];
        int zeroCnt = 0;
        for (int hour : hours) {
            int m = hour % 24;
            if (m == 0) {
                res += zeroCnt;
                zeroCnt++;
            } else {
                res += cnt[24 - m];
                cnt[m]++;
            }
        }
        return res;
    }

}

性能