2101.引爆最多的炸弹

目标

给你一个炸弹列表。一个炸弹的 爆炸范围 定义为以炸弹为圆心的一个圆。

炸弹用一个下标从 0 开始的二维整数数组 bombs 表示,其中 bombs[i] = [xi, yi, ri] 。xi 和 yi 表示第 i 个炸弹的 X 和 Y 坐标,ri 表示爆炸范围的 半径 。

你需要选择引爆 一个 炸弹。当这个炸弹被引爆时,所有 在它爆炸范围内的炸弹都会被引爆,这些炸弹会进一步将它们爆炸范围内的其他炸弹引爆。

给你数组 bombs ,请你返回在引爆 一个 炸弹的前提下,最多 能引爆的炸弹数目。

示例 1:

输入:bombs = [[2,1,3],[6,1,4]]
输出:2
解释:
上图展示了 2 个炸弹的位置和爆炸范围。
如果我们引爆左边的炸弹,右边的炸弹不会被影响。
但如果我们引爆右边的炸弹,两个炸弹都会爆炸。
所以最多能引爆的炸弹数目是 max(1, 2) = 2 。

示例 2:

输入:bombs = [[1,1,5],[10,10,5]]
输出:1
解释:
引爆任意一个炸弹都不会引爆另一个炸弹。所以最多能引爆的炸弹数目为 1 。

示例 3:

输入:bombs = [[1,2,3],[2,3,1],[3,4,2],[4,5,3],[5,6,4]]
输出:5
解释:
最佳引爆炸弹为炸弹 0 ,因为:
- 炸弹 0 引爆炸弹 1 和 2 。红色圆表示炸弹 0 的爆炸范围。
- 炸弹 2 引爆炸弹 3 。蓝色圆表示炸弹 2 的爆炸范围。
- 炸弹 3 引爆炸弹 4 。绿色圆表示炸弹 3 的爆炸范围。
所以总共有 5 个炸弹被引爆。

说明:

  • 1 <= bombs.length <= 100
  • bombs[i].length == 3
  • 1 <= xi, yi, ri <= 10^5

思路

坐标平面上有一些炸弹,并且已知炸弹的爆炸范围。现在可以选择引爆其中的一颗炸弹,被引爆炸弹的爆炸范围内的其它炸弹也会被引爆,问最多可以引爆的炸弹数量。

我们可以将问题转换为有向图,一枚炸弹能够波及到的其它炸弹认为是连通的,然后遍历每一枚炸弹,求出连通炸弹数量最多的个数即可。

那么如何建立这个有向图呢?固定一个,依次与其余的节点比较,时间复杂度为O(n^2),炸弹最多100个,应该可行。

实现过程中需要判断爆炸范围内的是否存在其它炸弹,可以使用炸弹坐标(圆心)之间的距离与各自的引爆半径相比较。这里需要注意防止数据溢出,另外还有一个小技巧,比较 sqrt(dx^2 + dy^2) 与 半径 r 的效率没有 dx^2 + dy^2r^2 高。

网友最快的题解使用的是 Floyd 算法。// todo

代码

/**
 * @date 2024-07-22 9:24
 */
public class MaximumDetonation2101 {

    public int maximumDetonation_v1(int[][] bombs) {
        int n = bombs.length;
        List<Integer>[] g = new List[n];
        for (int i = 0; i < n; i++) {
            g[i] = new ArrayList<>();
        }
        for (int i = 0; i < n; i++) {
            int ix = bombs[i][0];
            int iy = bombs[i][1];
            long ir = bombs[i][2];
            for (int j = i + 1; j < n; j++) {
                int jx = bombs[j][0];
                int jy = bombs[j][1];
                long jr = bombs[j][2];
                // 防止溢出
                long diffx = ix - jx;
                long diffy = iy - jy;
                long dist = diffx * diffx + diffy * diffy;
                if (ir * ir >= dist) {
                    g[i].add(j);
                }
                if (jr * jr >= dist) {
                    g[j].add(i);
                }
            }
        }
        int res = 0;
        for (int i = 0; i < n; i++) {
            boolean[] visited = new boolean[n];
            res = Math.max(res, dfs(i, g, visited));
        }
        return res;
    }

    int dfs(int root, List<Integer>[] g, boolean[] visited) {
        visited[root] = true;
        int res = 1;
        for (Integer next : g[root]) {
            if (visited[next]) {
                continue;
            }
            res += dfs(next, g, visited);
        }
        return res;
    }

}

性能

图中至多有 n^2 条边,dfs的时间复杂度是O(n^2),然后再遍历n个起点,时间复杂度为O(n^3)。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注