目标
给你一个整数数组,返回它的某个 非空 子数组(连续元素)在执行一次可选的删除操作后,所能得到的最大元素总和。换句话说,你可以从原数组中选出一个子数组,并可以决定要不要从中删除一个元素(只能删一次哦),(删除后)子数组中至少应当有一个元素,然后该子数组(剩下)的元素总和是所有子数组之中最大的。
注意,删除一个元素后,子数组 不能为空。
示例 1:
输入:arr = [1,-2,0,3]
输出:4
解释:我们可以选出 [1, -2, 0, 3],然后删掉 -2,这样得到 [1, 0, 3],和最大。
示例 2:
输入:arr = [1,-2,-2,3]
输出:3
解释:我们直接选出 [3],这就是最大和。
示例 3:
输入:arr = [-1,-1,-1,-1]
输出:-1
解释:最后得到的子数组不能为空,所以我们不能选择 [-1] 并从中删去 -1 来得到 0。
我们应该直接选择 [-1],或者选择 [-1, -1] 再从中删去一个 -1。
说明:
- 1 <= arr.length <= 10^5
- -10^4 <= arr[i] <= 10^4
思路
有一个数组求其子数组的最大和,允许删除子数组的一个元素,但子数组至少要有一个元素。
暴力解法是,先找出负值元素的下标,依次删除,针对删除后的数组求其子数组的最大和。使用前缀和求出最大子数组的时间复杂度是O(n^2),再删除负值(将负值置零,和增大),最坏情况下为O(n^3),会超时。暴力解法要注意,至少保留1个元素。
// todo
代码