2965.找出缺失和重复的数字

目标

给你一个下标从 0 开始的二维整数矩阵 grid,大小为 n * n ,其中的值在 [1, n2] 范围内。除了 a 出现 两次,b 缺失 之外,每个整数都 恰好出现一次 。

任务是找出重复的数字a 和缺失的数字 b 。

返回一个下标从 0 开始、长度为 2 的整数数组 ans ,其中 ans[0] 等于 a ,ans[1] 等于 b 。

示例 1:

输入:grid = [[1,3],[2,2]]
输出:[2,4]
解释:数字 2 重复,数字 4 缺失,所以答案是 [2,4] 。

示例 2:

输入:grid = [[9,1,7],[8,9,2],[3,4,6]]
输出:[9,5]
解释:数字 9 重复,数字 5 缺失,所以答案是 [9,5] 。

说明:

  • 2 <= n == grid.length == grid[i].length <= 50
  • 1 <= grid[i][j] <= n * n
  • 对于所有满足 1 <= x <= n * n 的 x ,恰好存在一个 x 与矩阵中的任何成员都不相等。
  • 对于所有满足 1 <= x <= n * n 的 x ,恰好存在一个 x 与矩阵中的两个成员相等。
  • 除上述的两个之外,对于所有满足 1 <= x <= n * n 的 x ,都恰好存在一对 i, j 满足 0 <= i, j <= n - 1grid[i][j] == x

思路

记录元素的出现次数,选出其中出现次数为2和0的值即可。

网友还给出了一些位运算与数学公式求解的方法,可以降低空间复杂度,不用对每个元素计次,而是使用异或和与数学公式求解。

异或和求解的关键是如何区分得到的 a ^ b,由于a 与 b 不同,异或的结果至少有一个非0位,可以根据该bit位分组,这样每一组中就只含有a或b。

至于数学公式求解的关键是,通过各项和的差可以得到 b - a,各项平方和的差可以得到 b^2 - a^2,进而求得 b + a,解方程组可得a、b。

代码

/**
 * @date 2024-05-31 0:12
 */
public class FindMissingAndRepeatedValues2965 {

/**
     * 公式求和 1,2,……,n^2 以及 1^2,2^2,……,n^2
     * 然后遍历求和,二者之差为b - a 和 b^2 - a^2
     * 进而可以求得b + a,解方程可得a、b
     */
    public int[] findMissingAndRepeatedValues_v2(int[][] grid) {
        int n = grid.length;
        int n2 = n * n;
        long sum = 0;
        long sum2 = 0;
        for (int[] row : grid) {
            for (int i : row) {
                sum += i;
                sum2 += i * i;
            }
        }
        long bsuba = n2 * (n2 + 1L) / 2 - sum;
        long b2suba2 = n2 * (n2 + 1L) * (2 * n2 + 1) / 6 - sum2;
        long badda = b2suba2 / bsuba;
        long b = (badda + bsuba) / 2L;
        long a = badda - b;
        return new int[]{(int) a, (int) b};
    }

    /**
     * 异或和
     */
    public int[] findMissingAndRepeatedValues_v1(int[][] grid) {
        int n = grid.length;
        int n2 = n * n;
        int prefix = 0;
        for (int i = 1; i <= n2; i++) {
            prefix ^= i;
        }
        int tmp = 0;
        for (int[] row : grid) {
            for (int element : row) {
                tmp ^= element;
            }
        }
        int axorb = prefix ^ tmp;
        int shift = Integer.numberOfTrailingZeros(axorb);
        int[] res = new int[2];
        // 由于axorb至少有1bit是不同的,那么根据该bit分组,这样每一组里面a b是分开的
        for (int i = 1; i <= n2; i++) {
            res[i >> shift & 1] ^= i;
        }
        for (int[] row : grid) {
            for (int element : row) {
                res[element >> shift & 1] ^= element;
            }
        }
        // 由于顺序是不确定的,判断出现的为a
        for (int[] row : grid) {
            for (int element : row) {
                if (element == res[0]){
                    return res;
                }
            }
        }
        // 调换位置
        return new int[]{res[1], res[0]};
    }

    public int[] findMissingAndRepeatedValues(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int l = m * n + 1;
        int[] occurrence = new int[l];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                occurrence[grid[i][j]]++;
            }
        }
        int[] res = new int[2];
        for (int i = 1; i < l; i++) {
            if (occurrence[i] == 0) {
                res[1] = i;
            } else if (occurrence[i] == 2) {
                res[0] = i;
            }
        }
        return res;
    }
}

性能

2981.找出出现至少三次的最长特殊子字符串I

目标

给你一个仅由小写英文字母组成的字符串 s 。

如果一个字符串仅由单一字符组成,那么它被称为 特殊 字符串。例如,字符串 "abc" 不是特殊字符串,而字符串 "ddd"、"zz" 和 "f" 是特殊字符串。

返回在 s 中出现 至少三次 的 最长特殊子字符串 的长度,如果不存在出现至少三次的特殊子字符串,则返回 -1 。

子字符串 是字符串中的一个连续 非空 字符序列。

示例 1:

输入:s = "aaaa"
输出:2
解释:出现三次的最长特殊子字符串是 "aa" :子字符串 "aaaa"、"aaaa" 和 "aaaa"。
可以证明最大长度是 2 。

示例 2:

输入:s = "abcdef"
输出:-1
解释:不存在出现至少三次的特殊子字符串。因此返回 -1 。

示例 3:

输入:s = "abcaba"
输出:1
解释:出现三次的最长特殊子字符串是 "a" :子字符串 "abcaba"、"abcaba" 和 "abcaba"。
可以证明最大长度是 1 。

说明:

  • 3 <= s.length <= 50
  • s 仅由小写英文字母组成。

思路

这道题要我们求给定字符串中至少出现三次的由相同字符组成的子串的最大长度。下面分情况讨论:

  • 如果特殊子串是连续的,那么取最大子串长度-2。例如:aaaa 有以下符合条件的特殊子串 (aa)aaa(aa)aaa(aa),至少出现三次的最长特殊子字符串长度为2。
  • 如果特殊子串个数为2:
    • 如果这两个子串长度相同,取长度-1。例如:aaa aaa 有以下符合条件的特殊子串 (aa)a a(aa) (aa)a a(aa),出现了4次,最长特殊子串长度为2。
    • 如果这两个子串长度不同,取 max(last -2 , secondTolast)。例如:aa aaa aaaa 有以下符合条件的特殊子串 (aaa) (aaa)a a(aaa),出现了3次,最长特殊子串长度为3。
  • 如果特殊子串个数大于2,取max(last -2 , thirdTolast)。例如:aa aaa aaa 有以下符合条件的特殊子串 (aa) (aa)a a(aa) (aa)a a(aa),出现了5次,最长特殊子串长度为3。

代码

/**
 * @date 2024-05-29 8:42
 */
public class MaximumLength2981 {
    public int maximumLength(String s) {
        int res = -1;
        Map<Character, List<Integer>> map = new HashMap<>(26);
        for (int i = 'a'; i <= 'z'; i++) {
            map.put((char) i, new ArrayList<>());
        }
        int n = s.length();
        char last = s.charAt(0);
        int cnt = 0;
        for (int i = 0; i < n; i++) {
            char c = s.charAt(i);
            if (c == last) {
                cnt++;
            } else {
                map.get(last).add(cnt);
                cnt = 1;
                last = c;
            }
            if (i == n - 1) {
                map.get(c).add(cnt);
            }
        }
        for (Map.Entry<Character, List<Integer>> entry : map.entrySet()) {
            List<Integer> occurrence = entry.getValue();
            int size = occurrence.size();
            Collections.sort(occurrence);
            if (size >= 2) {
                Integer secondToLastOccurrence = occurrence.get(size - 2);
                Integer lastOccurrence = occurrence.get(size - 1);
                if (lastOccurrence - secondToLastOccurrence >= 1) {
                    res = Math.max(res, Math.max(secondToLastOccurrence, lastOccurrence - 2));
                } else {
                    res = Math.max(res, lastOccurrence - 1);
                }
                if (size >= 3) {
                    res = Math.max(res, Math.max(occurrence.get(size - 3), occurrence.get(size - 1) - 2));
                }
            } else if (size == 1) {
                res = Math.max(res, occurrence.get(0) - 2);
            }
        }
        return res == 0 ? -1 : res;
    }
}

性能

// todo 性能优化

2951.找出峰值

目标

给你一个下标从 0 开始的数组 mountain 。你的任务是找出数组 mountain 中的所有 峰值。

以数组形式返回给定数组中 峰值 的下标,顺序不限 。

注意:

  • 峰值 是指一个严格大于其相邻元素的元素。
  • 数组的第一个和最后一个元素 不 是峰值。

示例 1:

输入:mountain = [2,4,4]
输出:[]
解释:mountain[0] 和 mountain[2] 不可能是峰值,因为它们是数组的第一个和最后一个元素。
mountain[1] 也不可能是峰值,因为它不严格大于 mountain[2] 。
因此,答案为 [] 。

示例 2:

输入:mountain = [1,4,3,8,5]
输出:[1,3]
解释:mountain[0] 和 mountain[4] 不可能是峰值,因为它们是数组的第一个和最后一个元素。
mountain[2] 也不可能是峰值,因为它不严格大于 mountain[3] 和 mountain[1] 。
但是 mountain[1] 和 mountain[3] 严格大于它们的相邻元素。
因此,答案是 [1,3] 。

说明:

  • 3 <= mountain.length <= 100
  • 1 <= mountain[i] <= 100

思路

找到大于左右两边元素值的下标。

代码

/**
 * @date 2024-05-28 8:39
 */
public class FindPeaks2951 {
    public List<Integer> findPeaks(int[] mountain) {
        List<Integer> res = new ArrayList<>();
        int n = mountain.length;
        int l = 0;
        int r = 2;
        while (r < n) {
            int i = l + 1;
            if (mountain[i] > mountain[l] && mountain[i] > mountain[r]) {
                res.add(i);
                l = r;
                r += 2;
            } else {
                l++;
                r++;
            }
        }
        return res;
    }
}

性能

2028.找出缺失的观测数据

目标

现有一份 n + m 次投掷单个 六面 骰子的观测数据,骰子的每个面从 1 到 6 编号。观测数据中缺失了 n 份,你手上只拿到剩余 m 次投掷的数据。幸好你有之前计算过的这 n + m 次投掷数据的 平均值 。

给你一个长度为 m 的整数数组 rolls ,其中 rolls[i] 是第 i 次观测的值。同时给你两个整数 mean 和 n 。

返回一个长度为 n 的数组,包含所有缺失的观测数据,且满足这 n + m 次投掷的 平均值 是 mean 。如果存在多组符合要求的答案,只需要返回其中任意一组即可。如果不存在答案,返回一个空数组。

k 个数字的 平均值 为这些数字求和后再除以 k 。

注意 mean 是一个整数,所以 n + m 次投掷的总和需要被 n + m 整除。

示例 1:

输入:rolls = [3,2,4,3], mean = 4, n = 2
输出:[6,6]
解释:所有 n + m 次投掷的平均值是 (3 + 2 + 4 + 3 + 6 + 6) / 6 = 4 。

示例 2:

输入:rolls = [1,5,6], mean = 3, n = 4
输出:[2,3,2,2]
解释:所有 n + m 次投掷的平均值是 (1 + 5 + 6 + 2 + 3 + 2 + 2) / 7 = 3 。

示例 3:

输入:rolls = [1,2,3,4], mean = 6, n = 4
输出:[]
解释:无论丢失的 4 次数据是什么,平均值都不可能是 6 。

示例 4:

输入:rolls = [1], mean = 3, n = 1
输出:[5]
解释:所有 n + m 次投掷的平均值是 (1 + 5) / 2 = 3 。

说明:

  • m == rolls.length
  • 1 <= n, m <= 10^5
  • 1 <= rolls[i], mean <= 6

思路

已知 m+n 个投骰子的观测数据的均值 mean,以及其中 m 个观察数据 rolls,返回缺失的观测数据,如果存在多个只返回其中一组,如果不存在答案返回空数组。

我们可以很容易计算出观测数据的总和 mean * (m + n),用它减去已知的观测数据和 sum,得到 diff

  • 如果 diff > n * 6 说明 剩余的 n 次都得到 6 点也不够,返回空数组。
  • 如果 diff < n 说明 剩余的 n 次都得到 1 点也多余,返回空数组。
  • 否则,问题变成选 n 个数字使其和等于 diff,每个数的取值范围是 1 ~ 6

这让我想起了背包问题还有之前做过的硬币找零,组合总和等问题。这里只需要返回一种可能就行了,不需要动态规划。

可以先计算 val = diff / n,如果有剩余 r,就为 r 个值加1。

代码

/**
 * @date 2024-05-27 9:20
 */
public class MissingRolls2028 {

    public int[] missingRolls(int[] rolls, int mean, int n) {
        int m = rolls.length;
        int sum = 0;
        for (int roll : rolls) {
            sum += roll;
        }
        int diff = mean * (m + n) - sum;
        if (diff > n * 6 || diff < n) {
            return new int[0];
        }
        int[] res = new int[n];
        int val = diff / n;
        diff = diff - val * n;
        Arrays.fill(res, val);
        for (int i = 0; i < diff; i++) {
            res[i]++;
        }
        return res;
    }
}

性能

1738.找出第K大的异或坐标值

目标

给你一个二维矩阵 matrix 和一个整数 k ,矩阵大小为 m x n 由非负整数组成。

矩阵中坐标 (a, b) 的 值 可由对所有满足 0 <= i <= a < m 且 0 <= j <= b < n 的元素 matrix[i][j](下标从 0 开始计数)执行异或运算得到。

请你找出 matrix 的所有坐标中第 k 大的值(k 的值从 1 开始计数)。

示例 1:

输入:matrix = [[5,2],[1,6]], k = 1
输出:7
解释:坐标 (0,1) 的值是 5 XOR 2 = 7 ,为最大的值。

示例 2:

输入:matrix = [[5,2],[1,6]], k = 2
输出:5
解释:坐标 (0,0) 的值是 5 = 5 ,为第 2 大的值。

示例 3:

输入:matrix = [[5,2],[1,6]], k = 3
输出:4
解释:坐标 (1,0) 的值是 5 XOR 1 = 4 ,为第 3 大的值。

示例 4:

输入:matrix = [[5,2],[1,6]], k = 4
输出:0
解释:坐标 (1,1) 的值是 5 XOR 2 XOR 1 XOR 6 = 0 ,为第 4 大的值。

说明:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 1000
  • 0 <= matrix[i][j] <= 10^6
  • 1 <= k <= m * n

思路

求二维矩阵 matrix 的第k大的异或坐标值,元素 matrix[i][j] 的异或坐标值等于对matrix[0][0] ~ matrix[i][j]矩阵中的所有值进行异或运算。

我们可以先分别对每一行按列进行异或运算,然后再针对每一列按行进行异或运算。然后将它们放入优先队列,再取第k大的值即可。

官网题解用到了二维前缀和 + 排序/快速选择。// todo

代码

/**
 * @date 2024-05-26 19:07
 */
public class KthLargestValue11738 {
    public int kthLargestValue(int[][] matrix, int k) {
        int m = matrix.length;
        int n = matrix[0].length;
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a);
        int[][] dp = new int[m][n];
        for (int i = 0; i < m; i++) {
            dp[i][0] = matrix[i][0];
        }
        for (int i = 0; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i][j - 1] ^ matrix[i][j];
            }
        }
        for (int i = 1; i < m; i++) {
            for (int j = 0; j < n; j++) {
                dp[i][j] ^= dp[i - 1][j];
                q.offer(dp[i][j]);
            }
        }
        for (int i = 0; i < n; i++) {
            q.offer(dp[0][i]);
        }
        int res = 0;
        while (k > 0) {
            res = q.poll();
            k--;
        }

        return res;
    }
}

性能

2903.找出满足差值条件的下标I

目标

给你一个下标从 0 开始、长度为 n 的整数数组 nums ,以及整数 indexDifference 和整数 valueDifference 。

你的任务是从范围 [0, n - 1] 内找出 2 个满足下述所有条件的下标 i 和 j :

  • abs(i - j) >= indexDifference 且
  • abs(nums[i] - nums[j]) >= valueDifference

返回整数数组 answer。如果存在满足题目要求的两个下标,则 answer = [i, j] ;否则,answer = [-1, -1] 。如果存在多组可供选择的下标对,只需要返回其中任意一组即可。

注意:i 和 j 可能 相等 。

示例 1:

输入:nums = [5,1,4,1], indexDifference = 2, valueDifference = 4
输出:[0,3]
解释:在示例中,可以选择 i = 0 和 j = 3 。
abs(0 - 3) >= 2 且 abs(nums[0] - nums[3]) >= 4 。
因此,[0,3] 是一个符合题目要求的答案。
[3,0] 也是符合题目要求的答案。

示例 2:

输入:nums = [2,1], indexDifference = 0, valueDifference = 0
输出:[0,0]
解释:
在示例中,可以选择 i = 0 和 j = 0 。 
abs(0 - 0) >= 0 且 abs(nums[0] - nums[0]) >= 0 。 
因此,[0,0] 是一个符合题目要求的答案。 
[0,1]、[1,0] 和 [1,1] 也是符合题目要求的答案。 

示例 3:

输入:nums = [1,2,3], indexDifference = 2, valueDifference = 4
输出:[-1,-1]
解释:在示例中,可以证明无法找出 2 个满足所有条件的下标。
因此,返回 [-1,-1] 。

说明:

  • 1 <= n == nums.length <= 100
  • 0 <= nums[i] <= 50
  • 0 <= indexDifference <= 100
  • 0 <= valueDifference <= 50

思路

给我们一个数组,找出其中下标之差大于等于indexDifference,并且值值差大于等于valueDifference的下标,如果不存在返回[-1, -1]。

按照题意我们循环 [0, length),将 [i + indexDifference, length) 的元素分别与 i 进行比较。

题目给定的数据范围比较小,可以使用暴力解法。数据范围变大后这个方法可能会超时,参考 2905.找出满足差值条件的下标 II。

题解给出了一次遍历的题解,只需记录前面的最大与最小值。// todo

代码

/**
 * @date 2024-05-25 20:14
 */
public class FindIndices2903 {
    public int[] findIndices(int[] nums, int indexDifference, int valueDifference) {
        int n = nums.length;
        for (int i = 0; i < n; i++) {
            int r = i + indexDifference;
            while (r < n && Math.abs(nums[i] - nums[r]) < valueDifference) {
                r++;
            }
            if (r < n) {
                return new int[]{i, r};
            }
        }
        return new int[]{-1, -1};
    }
}

性能

2831.找出最长等值子数组

目标

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。

如果子数组中所有元素都相等,则认为子数组是一个 等值子数组 。注意,空数组是 等值子数组 。

从 nums 中删除最多 k 个元素后,返回可能的最长等值子数组的长度。

子数组 是数组中一个连续且可能为空的元素序列。

示例 1:

输入:nums = [1,3,2,3,1,3], k = 3
输出:3
解释:最优的方案是删除下标 2 和下标 4 的元素。
删除后,nums 等于 [1, 3, 3, 3] 。
最长等值子数组从 i = 1 开始到 j = 3 结束,长度等于 3 。
可以证明无法创建更长的等值子数组。

示例 2:

输入:nums = [1,1,2,2,1,1], k = 2
输出:4
解释:最优的方案是删除下标 2 和下标 3 的元素。 
删除后,nums 等于 [1, 1, 1, 1] 。 
数组自身就是等值子数组,长度等于 4 。 
可以证明无法创建更长的等值子数组。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= nums.length
  • 0 <= k <= nums.length

思路

给定一个数组 nums 和一个正整数k,最多可以删除数组中k个元素,问数组中最长的等值子数组有多长,所谓等值子数组就是数组中的值完全相同。

直接的想法是记录每个相同元素的下标index,然后计算它们之间的距离 gap,使用滑动窗口来计算最多可以消除的 gap 数量。

注意不能优先消除序列中距离小的 gap,也就是说只能按照顺序去消除,否则可能会截断等值子数组。

刚开始使用哈希表记录相同元素的下标序列,结果提示超出内存限制,后来改用数组解决了问题。

Map在不断添加元素时可能需要进行扩容,每次扩容都需要重新分配更大的内存空间。 但我直接指定初始大小还是超出限制。

原来用了两个哈希表,indexMapgapMap,后来 indexMap 改成了 List[]gapMap 则直接在循环中计算并添加到 ArrayList 中。

注意这不是一个固定大小的窗口,如果按照固定大小的窗口去实现还是会超时。

代码

/**
 * @date 2024-05-23 0:11
 */
public class LongestEqualSubarray2831 {

    public int longestEqualSubarray_v1(List<Integer> nums, int k) {
        if (nums.size() == 0) {
            return 0;
        }
        int res = 0;
        List<Integer>[] indexMap = new List[100001];
        for (int i = 0; i < nums.size(); i++) {
            int val = nums.get(i);
            if (indexMap[val] == null) {
                indexMap[val] = new ArrayList<>();
            }
            indexMap[val].add(i);
        }
        for (List<Integer> index : indexMap) {
            if (index == null) {
                continue;
            }
            int i = 0;
            ArrayList<Integer> gaps = new ArrayList<>();
            for (int j = 1; j < index.size(); j++) {
                gaps.add(index.get(j) - index.get(i++) - 1);
            }
            int cnt = k;
            int gapNums = 0;
            int left = 0;
            int right = 0;
            while (right < gaps.size()) {
                while (cnt >= 0 && right < gaps.size()) {
                    cnt -= gaps.get(right);
                    if (cnt >= 0) {
                        right++;
                    }
                }
                gapNums = Math.max(gapNums, right - left);
                while (left < gaps.size() && cnt < 0) {
                    cnt += gaps.get(left);
                    left++;
                }
                right++;
            }

            res = Math.max(res, gapNums + 1);
        }
        return res;
    }
}

性能

又是勉强通过。//todo 性能分析与优化

2225.找出输掉零场或一场比赛的玩家

目标

给你一个整数数组 matches 其中 matches[i] = [winneri, loseri] 表示在一场比赛中 winneri 击败了 loseri 。

返回一个长度为 2 的列表 answer :

  • answer[0] 是所有 没有 输掉任何比赛的玩家列表。
  • answer[1] 是所有恰好输掉 一场 比赛的玩家列表。

两个列表中的值都应该按 递增 顺序返回。

注意:

  • 只考虑那些参与 至少一场 比赛的玩家。
  • 生成的测试用例保证 不存在 两场比赛结果 相同 。

示例 1:

输入:matches = [[1,3],[2,3],[3,6],[5,6],[5,7],[4,5],[4,8],[4,9],[10,4],[10,9]]
输出:[[1,2,10],[4,5,7,8]]
解释:
玩家 1、2 和 10 都没有输掉任何比赛。
玩家 4、5、7 和 8 每个都输掉一场比赛。
玩家 3、6 和 9 每个都输掉两场比赛。
因此,answer[0] = [1,2,10] 和 answer[1] = [4,5,7,8] 。

示例 2:

输入:matches = [[2,3],[1,3],[5,4],[6,4]]
输出:[[1,2,5,6],[]]
解释:
玩家 1、2、5 和 6 都没有输掉任何比赛。
玩家 3 和 4 每个都输掉两场比赛。
因此,answer[0] = [1,2,5,6] 和 answer[1] = [] 。

说明:

  • 1 <= matches.length <= 10^5
  • matches[i].length == 2
  • 1 <= winneri, loseri <= 10^5
  • winneri != loseri
  • 所有 matches[i] 互不相同

思路

给定一个记录比赛结果的二维数组,数组元素为[winneri, loseri],求没有输掉任何比赛的玩家以及仅输掉一场比赛的玩家。

简单实现可以直接利用TreeSet保存返回结果,往里面放的时候先判断是否输掉过比赛,如果后面输掉了比赛还要将其从从没输掉比赛的集合中移除。

对于仅输掉一次比赛的集合,不能根据它来判断是否输掉过比赛,因为输掉两次会从集合中移除,如何后续还会输掉比赛,判断集合中没有,就会错误地向其中添加,因此需要额外记录输掉过比赛的集合。

官网题解使用的是哈希表记录失败的次数,效率更高。

代码

/**
 * @date 2024-05-22 9:03
 */
public class FindWinners2225 {

    public List<List<Integer>> findWinners(int[][] matches) {
        List<List<Integer>> res = new ArrayList<>();
        Set<Integer> neverLose = new TreeSet<>();
        Set<Integer> loseOnce = new TreeSet<>();
        Set<Integer> lost = new HashSet<>();
        for (int[] match : matches) {
            int win = match[0];
            int lose = match[1];
            neverLose.remove(lose);
            if (!lost.contains(win)) {
                neverLose.add(win);
            }
            if (!loseOnce.contains(lose) && !lost.contains(lose)) {
                loseOnce.add(lose);
            } else {
                loseOnce.remove(lose);
            }
            lost.add(lose);
        }
        List<Integer> winner = new ArrayList<>(neverLose);
        List<Integer> loser = new ArrayList<>(loseOnce);
        res.add(winner);
        res.add(loser);
        return res;
    }

    public List<List<Integer>> findWinners_v1(int[][] matches) {
        Map<Integer, Integer> loseCnt = new HashMap<>(matches.length);
        for (int[] match : matches) {
            //可以直接在这里记录没有一次失败的
            loseCnt.merge(match[1], 1, Integer::sum);
        }
        List<List<Integer>> res = new ArrayList<>();
        Set<Integer> neverLose = new HashSet<>();
        for (int[] match : matches) {
            if(!loseCnt.containsKey(match[0])){
                neverLose.add(match[0]);
            }
        }
        List<Integer> winner = new ArrayList<>(neverLose);
        Collections.sort(winner);
        List<Integer> lostOnce = loseCnt.entrySet().stream()
                .filter((entry) -> entry.getValue() == 1)
                .map(Map.Entry::getKey).sorted()
                .collect(Collectors.toList());
        res.add(winner);
        res.add(lostOnce);
        return res;
    }
}

性能

暴力解

哈希加排序