2671.频率跟踪器

目标

请你设计并实现一个能够对其中的值进行跟踪的数据结构,并支持对频率相关查询进行应答。

实现 FrequencyTracker 类:

  • FrequencyTracker():使用一个空数组初始化 FrequencyTracker 对象。
  • void add(int number):添加一个 number 到数据结构中。
  • void deleteOne(int number):从数据结构中删除一个 number 。数据结构 可能不包含 number ,在这种情况下不删除任何内容。
  • bool hasFrequency(int frequency): 如果数据结构中存在出现 frequency 次的数字,则返回 true,否则返回 false。

示例 1:

输入
["FrequencyTracker", "add", "add", "hasFrequency"]
[[], [3], [3], [2]]
输出
[null, null, null, true]

解释
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.add(3); // 数据结构现在包含 [3]
frequencyTracker.add(3); // 数据结构现在包含 [3, 3]
frequencyTracker.hasFrequency(2); // 返回 true ,因为 3 出现 2 次

示例 2:

输入
["FrequencyTracker", "add", "deleteOne", "hasFrequency"]
[[], [1], [1], [1]]
输出
[null, null, null, false]

解释
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.add(1); // 数据结构现在包含 [1]
frequencyTracker.deleteOne(1); // 数据结构现在为空 []
frequencyTracker.hasFrequency(1); // 返回 false ,因为数据结构为空

示例 3:

输入
["FrequencyTracker", "hasFrequency", "add", "hasFrequency"]
[[], [2], [3], [1]]
输出
[null, false, null, true]

解释
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.hasFrequency(2); // 返回 false ,因为数据结构为空
frequencyTracker.add(3); // 数据结构现在包含 [3]
frequencyTracker.hasFrequency(1); // 返回 true ,因为 3 出现 1 次

说明:

  • 1 <= number <= 10^5
  • 1 <= frequency <= 10^5
  • 最多调用 add、deleteOne 和 hasFrequency 共计 2 * 10^5 次

思路

这道题要我们写一个数据结构,能够实时追踪已保存数字的出现频率。我们可以很方便地使用Map记录数字出现的频率,但是无法直接判断频率是否存在。只能遍历EntrySet一个一个找。

于是考虑再记录一个以频率为Key,相应频率的数字个数为value的Map,以便直接判断是否存在相应的频率。

那么第一个Map是否可以省略呢?当然不行,因为数字新增或删除后,相应的频率也会发生变化。如果不记录的话,无法更新第二个Map。

当数字出现频率增加,除了要累加第一个Map相应数字的频率,还要同时将第二个Map原频率对应数字的个数减1,新频率对应数字的个数加1。

当数字出现频率减少,除了要减小第一个Map相应数字的频率,还要同时将第二个Map原频率对应数字的个数减1,新频率对应数字的个数加1。

代码

/**
 * @date 2024-03-21 8:57
 */
public class FrequencyTracker2671 {

    class FrequencyTracker {
        private final Map<Integer, Integer> elements;
        private final Map<Integer, Integer> fRecord;

        public FrequencyTracker() {
            elements = new HashMap<>();
            fRecord = new HashMap<>();
        }

        public void add(int number) {
            Integer f = elements.get(number) == null ? 0 : elements.get(number);
            if (f != 0) {
                fRecord.put(f, fRecord.get(f) - 1);
            }
            elements.merge(number, 1, Integer::sum);
            fRecord.merge(++f, 1, Integer::sum);
        }

        public void deleteOne(int number) {
            Integer f = elements.get(number) == null ? 0 : elements.get(number);
            if (f != 0) {
                elements.put(number, f - 1);
                fRecord.put(f, fRecord.get(f) - 1);
                fRecord.merge(--f, 1, Integer::sum);
            }
        }

        public boolean hasFrequency(int frequency) {
            return fRecord.get(frequency) != null && fRecord.get(frequency) > 0;
        }
    }

性能

有网友写的变长数组性能更高一些,如果是直接根据题目最大范围创建数组,针对这些测试案例性能反而不好。