889.从前序与后序遍历序列构造二叉树

目标

给定两个整数数组,preorder 和 postorder ,其中 preorder 是一个具有 无重复 值的二叉树的前序遍历,postorder 是同一棵树的后序遍历,重构并返回二叉树。

如果存在多个答案,您可以返回其中 任何 一个。

思路

本来看到这个题目觉得没什么新意,前面都已经做过 从前序与中序遍历序列构造二叉树从中序与后序遍历序列构造二叉树这两个题目了,准备快速写一下。没想到,又花费了许多时间。虽然知道大体的方向,但真正写出来还是不那么容易的。对照着一个案例,按照大体思路写完解决方法之后,就急着去测试,结果有的例没有通过,有的数组越界。然后就开始调试,一会这加个判断,那处理一个特例,这个案例通过了,别的又不行了,一来二去就把自己绕晕了。之所以存在这样的情况还是对这个问题的理解不到位,没有一个清晰的思路。

有了前面的两道题的求解经验,我们知道这个题还是用递归求解更容易一些。求解的核心是遍历先序/后序序列,一个从前向后,一个从后向前。将遍历到的每一个节点去中序序列中找到相应位置然后划分左/右子树,然后递归处理子树。其实这里容易忽略一个问题,就是左/子树的节点一定会在先序/后序序列随后遍历中出现。可以根据这个来明确临界条件,否则容易漏掉或者弄错左右以及父节点。这也就是为什么先序序列先遍历左子树,后序先遍历右子树的原因。因为游标顺序移动,刚好可以覆盖相应的子树。刚开始我还想着分别在先序和后序维护两个游标,这是不可行的。

说回到这个题目,它不像前面两个那样可以明确左右子树。前面说前序序列的第二个节点是其左子树或右子树的根节点,并非是无法确定,而是需要结合实际情况看是否存在左子树,如果存在则一定是左子树根节点。这个可以在中序序列中找到相应位置就知道了。但是对于这个题而言左右是无法确定的,很简单的例子 [1,2][2,1]

我们的思路是遍历先序序列,找到其在后序序列的位置,该位置减1则是可能的右根节点,反查其在先序序列中的位置。这样我们就得到了一个左子树区间或者单个节点(无法确定左右)。这样我们就可以递归构建左子树,对于单个节点的情况需要将搜索范围扩展到序列结尾,否则可能反查不到节点在先序序列中的位置。

代码

/**
 * @date 2024-02-23 10:05
 */
public class BuildBinaryTreeFromPrePost {
    public static class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;

        TreeNode() {
        }

        TreeNode(int val) {
            this.val = val;
        }

        TreeNode(int val, TreeNode left, TreeNode right) {
            this.val = val;
            this.left = left;
            this.right = right;
        }

        @Override
        public String toString() {
            return "TreeNode{" +
                    "val=" + val +
                    ", left=" + left +
                    ", right=" + right +
                    '}';
        }
    }

    public static int preCursor = 1;

    public static void main(String[] args) {
        BuildBinaryTreeFromPrePost main = new BuildBinaryTreeFromPrePost();
//        int[] preorder = new int[]{1,2,4,5,3,6,7};
//        int[] preorder = new int[]{3, 9, 20, 15, 7};
//        int[] preorder = new int[]{1,2};
//        int[] preorder = new int[]{2,1,3};
//        int[] preorder = new int[]{4,2,1,3};
        int[] preorder = new int[]{3,4,2,1};
//        int[] preorder = new int[]{1};
//        int[] postorder = new int[]{4,5,2,6,7,3,1};
//        int[] postorder = new int[]{1};
//        int[] postorder = new int[]{9, 15, 7, 20, 3};
//        int[] postorder = new int[]{2,1};
//        int[] postorder = new int[]{3,1,2};
//        int[] postorder = new int[]{3,1,2,4};
        int[] postorder = new int[]{2,1,4,3};
        System.out.println(main.constructFromPrePost(preorder, postorder));
    }

    public TreeNode constructFromPrePost(int[] preorder, int[] postorder) {
        TreeNode root = new TreeNode(preorder[0]);
        if (preorder.length == 1) {
            return root;
        }
        int rightRootPreIndex = 0;
        for (int i = 0; i < preorder.length; i++) {
            if (postorder[postorder.length - 2] == preorder[i]){
                rightRootPreIndex = i;
                break;
            }
        }
        // 注意当start == end时,搜索长度应扩展到整个数组长度,否则会导致查询不到当前节点的右子树根节点。
        root.left = buildSubTree(preorder, postorder, preCursor, rightRootPreIndex == preCursor ? preorder.length:rightRootPreIndex);
        if (preCursor >= rightRootPreIndex && preCursor < preorder.length) {
            root.right = buildSubTree(preorder, postorder, rightRootPreIndex, preorder.length);
        }
        return root;
    }

    public TreeNode buildSubTree(int[] preorder, int[] postorder, int start, int end){
        TreeNode root = new TreeNode(preorder[preCursor]);
        int rightRootPostIndex = 0;
        int rightRootPreIndex = 0;
        for (int i = 0; i < postorder.length; i++) {
            if (root.val == postorder[i]){
                rightRootPostIndex = i;
                preCursor++;
                break;
            }
        }
        if (rightRootPostIndex > 0) {
            for (int i = start; i < end; i++) {
                if (postorder[rightRootPostIndex - 1] == preorder[i]) {
                    rightRootPreIndex = i;
                    break;
                }
            }
            if (preCursor < rightRootPreIndex) {
                root.left = buildSubTree(preorder, postorder, preCursor, rightRootPreIndex == 0 ? preorder.length : rightRootPreIndex);
            }
            if (preCursor >= rightRootPreIndex && preCursor < end && rightRootPreIndex !=0) {
                root.right = buildSubTree(preorder, postorder, rightRootPreIndex, end);
            }
        }
        return root;
    }
}

先序序列的初始条件是直接从第二个位置开始的,直接从后序序列的倒数第二个反查其在先序序列的位置。

性能